

 ∇

VOL. 22, NO. 9

NOVEMBER 1941

For sale by the Superintendent of Documents, Washington, D. C. - - - - - - - - - - - See page 2 of cover for prices

PUBLIC ROADS ... A Journal of Highway Research

issued by the

FEDERAL WORKS AGENCY PUBLIC ROADS ADMINISTRATION

D. M. BEACH, Editor

Volume 22, No. 9

November 1941

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

	Page	
The Application of Random Sampling to Fiscal Studies	199	
Effect of Glassy Slag on the Stability and Resistance to Film Stripping of Bituminous Pav-		
ing Mixtures	209	

THE PUBLIC ROADS ADMINISTRATION - - - - - Willard Building, Washington, D. C. REGIONAL HEADQUARTERS - - - - - - - - - - - Federal Building, Civic Center, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana. Post Office Building, Portland, Oreg.	DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee. Post Office Building, Montgomery, Ala.
DISTRICT No. 2. California, Arizona, and Nevada. Federal Building, Civic Center, San Francisco, Calif.	DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.	76 State St., Albany, N. Y.
254 New Customhouse, Denver, Colo.	DISTRICT No. 10. Delaware, Maryland, Ohio, Pennsylvania, and District
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 1109 Main Post Office Building, St. Paul, Minn.	Willard Building, Washington, D. C.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.	DISTRICT No. 11. Alaska. Room 419, Federal and Territorial Building. Juneau. Alaska.
DICTIDICT N. ())	DISTRICT No. 12. Idaho and Utah.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas. Room 502, United States Courthouse, Fort Worth, Tex.	Federal Building, Ogden, Utah.
DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.	DISTRICT No. 14. North Carolina, South Carolina, Virginia, and West Virginia.
South Chicago Post Office Building, Chicago, Ill.	Montgomery Building, Spartanburg, S. C.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain PUBLIC ROADS can do so by sending \$1 per year (foreign subscription \$1.50), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

> CERTIFICATE: By direction of the Commissioner of Public Roads, the matter contained herein is published as administrative information and is required for the proper transaction of the public business.

THE APPLICATION OF RANDOM SAMPLING TO FISCAL STUDIES

A DISCUSSION OF THE PROBLEMS INVOLVED IN DETERMINING HIGHWAY EXPENDITURES BY THE SEVERAL UNITS OF GOVERNMENT

BY THE DIVISION OF CONTROL, PUBLIC ROADS ADMINISTRATION

Reported by THOMAS M. C. MARTIN, Assistant Highway Engineer-Economist

DEQUATE INFORMATION about highway A finance in all units of government is a prerequisite to the orderly development of a comprehensive, forward-looking highway program. The amounts of money raised locally by the lesser governmental units, the amounts received by them as grants-in-aid from higher units of government, as well as the use made of these funds, are all essential planning data. These facts must be known if highway needs and revenues are to be intelligently proportioned to the other needs and corresponding revenue sources of the State.

Accurate information upon which to base an estimate of the probable costs of such programs of consolidation is seldom available when legislative deliberations are in progress. Consequently, when the question suddenly arises, it can be determined only approximately whether or not the resources of the State, usually limited to highway-user revenues, will be adequate for the increased burden. The question of whether a State is financially able to assume the proposed additional responsibilities without seeking new sources of money is a very important matter. It usually happens

The difficulty of obtaining adequate data on highway finances appears to vary inversely with the size of the governmental unit. Ordinarily little trouble is encountered in ascertaining information relative to State revenues and expenditures, and with some exceptions the fiscal operations of the counties in the United States are readily obtainable. These, however, are by no

means all of the units of government that engage in highway activities. There are a large number of local units, both rural and urban, data for which are essential to a complete picture of highway operations. Moreover, in many States the gross amounts involved in financing these local roads and streets are as large as the amounts handled by the State highway departments. Frequently, accurate information regarding the receipts and expenditures of these smaller units of government is not readily available, and special studies are necessary to obtain proper information.

LOCAL ROAD FINANCE DATA VALUABLE

Knowledge of local road finances has been of particular value during the past decade in connection with a noticeable trend toward the assumption of greater responsibility for county and local roads by certain States. The taking over of the North Carolina county road system by the State on July 1, 1931, was preceded by a thorough study of the financial status of the county roads.

Similarly, when the 5-year program of county and township road consolidation was initiated in Michigan in 1931, a comprehensive study was made of all Michigan roads.2

422228-41

Data on highway income and expenditures by all units of government are needed in planning future highway development. The multiplicity of local units —municipalities, townships, counties, school districts, etc.—makes collecting complete information from each a sizeable and expensive undertaking.

An investigation was made of the feasibility of applying sampling methods to the collection of local financial statistics. The procedures followed, formulas used, and results obtained, are reported herein. A graphical means is given of appraising various sam-ple sizes in terms of their probable reliability.

that the governmental units previously responsible financed their work with a combination of State subventions and receipts from local property taxation.

It is likewise essential to know the mileage of roads owned by local units and the standards to which they were built and are maintained. These facts are necessary to gage properly the

annual financial require-ments arising from the added responsibilities. The need for such information becomes evident in still other ways, particularly when proposals are made to allocate large sums of highway-user or other State revenues to local units of government for highway or nonhighway purposes either as single lump-sum payments or as continuing annual subventions. The wisdom of enacting such proposals into law can receive a more thorough consideration and fuller debate when complete and accurate data concerning the needs and resources of all units are readily available. Dissipation of State funds into channels where the public does not receive a proportionate return on the funds it has contributed can best be prevented by making all of the facts available.

The several States and the Public Roads Administration have been engaged in studies of this problem for more than 20 years. Detailed reports of State highway mileage, receipts, and expenditures, have been prepared annually since 1921. The gathering of cor-responding information for the local units of government was commenced as early as 1912, made more complete in 1917, and has been done annually since 1921. The relative incompleteness of the local statistics has long been recognized, and constant attempts have been made to improve the reporting system.

The difficulty in obtaining accurate data from units of government other than the State arises in a considerable measure from the large number of governmental units involved and the incomplete records kept by many of these spending agencies even for their own purposes.

 ¹ North Carolina County Road and Finance Survey, PUBLIC ROADS, vol. 11, No. 12, February 1931. (Report of a cooperative investigation by the North Carolina State Highway Commission, the North Carolina State Tax Commission, and the United States Bureau of Public Roads.)
 ¹ A Survey of Highway Transportation in Michigan, PUBLIC ROADS, vol. 13, No. 12, February 1933.
 The Michigan Financial Survey, PUBLIC ROADS, vol. 14, No. 4, June 1933.

Table 1 shows the number of units in each of the States in 1939, as prepared by the Illinois Tax Commission. In the collection of State highway data the Public Roads Administration needs to concern itself only with the 48 States and the District of Columbia, but local rural road data must be obtained from approximately 20,000 units. Most of the counties and, in the States in which they exist, the towns and townships, carry on highway activities. In addition to these units, the sixth column of table 1 lists many road districts which at least until very recently carried on road functions similar to those of the townships.

TABLE 1.—Tax	ing units	in the L	Inited S	States, 1939
--------------	-----------	----------	----------	--------------

State	Coun- ties	Incor- porated places	Towns and town- ships	School dis- triets	All others	Total 1
Alahama	67	206		119		476
Arizona	14	230		416	99	410
Arbaneae	75	380		2 062	824	1 261
California	57	989		2 057	265	3 569
Colorado	62	237		2,051	200	2 351
Connecticut	8	40	173	2,001	114	362
Delaware	3	52		15		71
Florida	67	289		893		1,250
Georgia	159	593				753
Idaho	44	150		826		1.021
Illinois	102	1,134	2 1, 625	12, 115	123	15,100
Indiana	92	544	1,017	163	5	1,822
lowa	99	917	1,602	4,873		7,492
Kansas	105	580	1, 550	8,772	. 65	11,073
Kentucky	120	369		263	14	767
Moine	04	210	40.4	510	101	502
Maine	10	127	494	512		1,043
Maryland	23	107	219	24	20	205
Michigan	10	477	1 967	6 550	00	9.28
Minnesota	87	726	1 002	7 602		10,010
Mississinni	82	305	1, 502	5 706	756	6 040
Missouri	114	773	345	8 957	100	10, 100
Montana	56	116	010	2 437		2 610
				-,		2, 010
Nebraska	93	529	477	7,098		8, 198
Nevada	17	16		293	19	346
New Hampshire	10	11	224	241		487
New Jersey	21	331	238	551	17	1,159
New Mexico	31	63		1,100		1,195
New York	57	615	927	7,913	96	9,609
North Dalate	100	380	1 470	169	139	795
Ohio	00	000	1, 470	2, 271	37	4,165
Oklahoma	00	462	1,001	1,700		4,001
Oregon	36	102		9 114		0,208
Pennsylvania	67	- 986	1 577	2, 582	66	2,400
			.,	2,002	00	0, 210
Rhode Island		7	32		54	94
South Carolina	46	265		39	10	361
South Dakota	64	311	1,136	3, 437		4,949
Tennessee	95	233		95		424
Texas	254	580		6,000	271	7,106
Utan	29	197		40		267
Virginio	14	110	246	272		643
Washington	100	215		1 100	2	418
West Virginia	09	221	13	1, 491	371	2, 196
Wisconsin	71	525	1 980	7 200		0 979
Wyoming	22	82	1, 200	1, 390	0	9, 273
				000		491
Total	3,052	16,450	19,304	118,667	3.624	161, 145
					0,021	101, 110

¹ Includes one for State. ² Includes road districts in commission counties.

The total number of taxing counties in the United States, excluding those in States where the counties exercise no highway functions, is 2,666,³ or an average of 72 counties per State in each of the 37 States involved. Although this figure is influenced slightly by the large number of counties in Georgia and Texas, the median number of counties is 67 or only slightly lower than the arithmetic mean. While the States must therefore deal with an average of approximately 50 percent more

counties than the number of States with which the Public Roads Administration is concerned, the problem of the States is still more complicated. The 48 States have 16,450 incorporated places or a mean of 343, with the median State possessing a total of 286 such incorporated places. In addition 20 States have a mean of 851 towns and townships engaged in road work,⁴ with a median of 710.

SAMPLING OBVIATES LARGE EXPENDITURES IN OBTAINING LOCAL DATA

Some information on the highway activities of the rural units (counties, towns, townships, and road districts) is available for the years since 1921, with the exception of 1922. More exhaustive surveys were conducted in 1921, 1926, and 1931 and the data for these years are believed to be more reliable than those for the intervening years when lack of funds and personnel made thorough studies impracticable.

The most exhaustive studies ever undertaken in this field were those conducted by the State-wide highway planning surveys which commenced in 1935. In these studies financial data were collected covering the receipts and expenditures for 1 fiscal year of all taxing agencies for all public purposes. This was done in order that a proper relationship could be established between highway and other governmental activities.

With the completion of these 1-year studies the problem again arises of collecting regularly adequate annual financial data relative to highways. The task has even increased recently, since it is becoming evident that the most urgent traffic problem requiring current solution is the provision of arterial approaches to urban centers both large and small. Authorities are generally agreed that the weakest links in the existing highway system are usually these roads in and near cities. It is on these roads that most traffic congestion occurs; consequently, it is there that the chief threat to the efficiency of highway transportation arises. It is also a fact that since these highways as a class are the most expensive of all to build, the financing of them is one of the most difficult and important tasks of the immediate future. Consequently, data from more than 16,000 incorporated places should also be collected annually if a complete representation of the street and highway problem is to be obtained.

The planning surveys have greatly stimulated the adoption of uniform reporting methods for all levels of government in many States and thus contributed to the solution of part of the problem, i. e., an improvement in the quality and availability of information. There is still the problem of the large number of units and the correspondingly large costs involved in analyzing their reports. And not to be overlooked is the fact that if uniform centralized reporting does not exist, field investigation will normally be required to obtain anything approaching the desired information. An investigation was made, therefore, of the feasibility of applying sampling methods to the collection of local financial statistics with the fiscal survey data of the Wisconsin State-wide Highway Planning Survey as the basis for the inquiry.⁵ It is with the conduct and results of this investigation that the present article is chiefly concerned.

³ The five counties of Rhode Island do not exist as taxing jurisdictions, while the counties in Connecticut, Delaware, Maine, Massachusetts, New Hampshire, North Carolina, Vermont, and West Virginia perform no highway functions. Only three of Virginia's counties engage in highway activities and in Pennsylvania the county read programs are of extremely minor character, with the possible exception of Allegheny County. None of these States has been included, therefore, in this figure.

⁴ The townships of Indiana and Michigan for all practical purposes may be considered to have no road functions.
⁴ The studies at Madison, Wisconsin, reported here were under the sponsorship of Dr. H. R. Trumbower, Senior Agricultural Transporation Economist, and were made in connection with the cooperative agreement between the University of Wisconsin and the Public Roads Administration.

The data employed in this investigation were gathered by the Wisconsin planning survey during its original operations and were for the calendar year 1935. The fiscal statistics for each Wisconsin town⁶ had been recorded on forms which provided for a fairly extensive itemization of revenues and disbursements for all purposes. The separate classifications employed on these forms are not all of equal importance. Included to facilitate tabulation, many of them are not of particular significance in final analyses. The sampling of financial statistics should be restricted to include only items that are relatively stable in their occurrence in the reports of the individual units. Certain categories of both receipts and expenditures are entirely too variable to permit accurate estimation by sampling techniques. This would be true, for example, in the case of the borrowings of Wisconsin towns. In ordinary times these jurisdictions resort to such methods of financing very infrequently, and totals obtained by sample expansion would not be very reliable. Sampling accuracy depends upon a substantial degree of similarity in the individual members of the population or universe being sampled.

IN SAMPLING CERTAIN ELEMENTS REQUIRE SPECIAL TREATMENT

If the individual members of a population are radically different one from another, an accurate description of the characteristics of the group will be possible only through the inclusion of the entire population in the analyses. All that sampling procedures afford, where they are applicable, is a more expeditious and economical means of describing the properties of a large class of things or events by means of the observation of less than the whole number of individuals constituting the group. What is requisite is that there be some welldefined central tendency in the properties of the individual members of a given group. An arithmetic average may be computed for any set of numbers, but for purposes of sample expansion it is important that the individual numbers be fairly closely centered about their average value.

⁶ A "town" in Wisconsin is an unincorporated rural unit of government and should not be confused with so-called towns which are in reality incorporated villages or cities. In the present inquiry it was possible to include but a few of the more important classifications of receipts and disbursements which were provided for on the basic planning survey forms. On the revenue side these included (1) total local revenues, (2) total nonlocal revenues, and (3) total current receipts. On the disbursement side only total net expenditures were considered. All of the foregoing were further subdivided to show amounts collected and expended for highway purposes and for all public functions.

Table 2 presents data on the population distribution and expenditures of Wisconsin governmental units for 1935 from which the relative importance of the fiscal operations of the town units may be judged.

In applying random sampling to local units of government it is necessary to consider the possibility that certain extreme elements of the universe may require special treatment. In Wisconsin the seven towns of Milwaukee County provide such an example. The receipts and expenditures of towns necessarily bear some relation to the population which they include. The average population of the seven Milwaukee County towns is approximately 6,600. This is more than eight times the average population of the remaining 1,273 towns in the State, which is about 800. If there were a sufficient number of these large towns it would be possible to employ stratified sampling. These especially large towns would in effect be treated as a separate universe and independently sampled. A random sample, however, should ordinarily contain no fewer than 30 items. In this instance, consequently, as in most others which would be encountered in sampling data for local units of government, it was considered advisable to obtain data for all of the Milwaukee County towns. The sampling inquiry was extended therefore only to the remaining 1,273 towns.

There are a variety of ways in which a random selection could be effected. The method selected in this instance used the so-called "Tippett's Numbers."⁷ This procedure involved the superposition of a new and independent characteristic, that of an ordinal number, upon the individual members of the universe.

⁷ L. H. C. Tippett, Random Sampling Numbers, No. XV, Tracts for Computers, Edited by Karl Pearson, Cambridge University Press, London, 1927.

TABLE 2.—Population distribution and net expenditure data for Wisconsin governmental units, 1935, classified by purpose 1

		Total population	Percent-	Percent-		Other public functions				Constituted	
Unit of government	Number of places		age of total popula-	HIGHV	rays	Educa	tion	Tot	al	Granu	totai
			tion	Amount	Percent	Amount	Percent	Amount	Percent	Amount	Percent
Towns	1, 280	1, 086, 944	37.1	\$5, 485, 159	14.7	\$13, 071, 972	23.8	\$16, 481, 150	10.2	\$21, 966, 309	11. 1
1-1,000.	334	159, 279	5.4	391, 330	1.0	2, 395, 970	4.4	4, 051, 512	2.5	4, 442, 842	2. 2
Rural areas	1, 614	1, 246, 223	42.5	5, 876, 489	15.7	15, 467, 942	28.2	20, 532, 662	12.7	26, 409, 151	13. 3
Incorporated places having a population of- 1,001-2,500 2,501-5,000 5,001-10,000 10,001-25,000 25,001-50,000 50,001-100,000 Milwaukee	88 36 20 14 9 3 1	$137, 613 \\ 128, 990 \\ 141, 905 \\ 223, 821 \\ 305, 175 \\ 175, 703 \\ 577, 083$	$\begin{array}{r} 4.7\\ 4.4\\ 4.8\\ 7.6\\ 10.4\\ 6.0\\ 19.6\end{array}$	$\begin{array}{r} 429,117\\ 453,731\\ 412,970\\ 392,249\\ 678,083\\ 246,954\\ 1,462,027\end{array}$	$1.2 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.8 \\ .7 \\ 3.9$	$\begin{array}{c} 2,269,350\\ 2,139,826\\ 2,388,745\\ 3,997,845\\ 5,129,930\\ 3,578,688\\ 10,826,334 \end{array}$	$\begin{array}{r} 4.1\\ 3.9\\ 4.4\\ 7.3\\ 9.4\\ 6.5\\ 19.8\end{array}$	$\begin{array}{c} 4,702,805\\ 4,155,669\\ 4,816,365\\ 8,745,482\\ 12,332,469\\ 7,898,974\\ 26,624,041 \end{array}$	2.92.63.05.47.64.916.5	$\begin{array}{c} 5,131,922\\ 4,609,400\\ 5,229,335\\ 9,137,731\\ 13,010,552\\ 8,145,928\\ 28,086,068\end{array}$	$\begin{array}{c} 2. \ \ell \\ 2. \ 3 \\ 2. \ \ell \\ 4. \ \ell \\ 6. \ \ell \\ 4. \ 1 \\ 14. \ 1 \end{array}$
Urban places	171	1, 690, 290	57.5	4, 075, 131	11.0	30, 330, 718	55.4	69, 275, 805	42.9	73, 350, 936	36.9
Counties State				11, 255, 374 15, 974, 942	30. 3 43. 0	1, 100, 576 7, 885, 648	2.0 14.4	53, 995, 482 17, 700, 349	$\begin{array}{c} 33.\ 4\\11.\ 0\end{array}$	65, 250, 856 33, 675, 291	32. 8 17. 0
Grand total	1, 785	2, 936, 513	100.0	37, 181, 936	100.0	54, 784, 884	100.0	161, 504, 298	100.0	198, 686, 234	100.0

¹ From Wisconsin State-wide Highway Planning Survey, basic analysis form, line 37.

TABLE 3.—Expenditures in Wisconsin towns selected for preliminary sample

Serial No. County Town 22 Ashland. Gordon. \$\$11,726 12 30 do White River. 16,673 17 75. Bayfield. Pilsen. 16,673 17 106. Buffalo. Dover. 13,865 14 124. Burnett. La Follette. 7,770 8 130. Calumet. Brillion. 20,385 20 131. Chippewa. Hirch Creek. 16,633 7 132. Clark. Hixon. 90,978 90 205. Columbia. Caledonia. 23,655 92 217. do Newport. 6,030 6 222. Donglas Summit. 16,270 16 334. Dunn. Otter Creek. 8,990 20 31. Forest. Blackwell. 6,833 7 322. Donglas Summit. 16,273 13 346. Jackson.	Assigned			Total net expenditures ¹		
22. Ashland. Gordon \$\$11,726 12 30.	serial No.	County	Town	Actual	Nearest \$1,000	
30 do White River 16, 673 17 75 Bayfield Pilsen 6, 227 6 106 Burfield Dover 13, 865 14 113 do Mondovi 9, 759 10 124 Burnett Barlilion 20, 882 20 151 Chippewa Birch Creek 6, 555 7 182 Clark Hixon 19, 659 20 205 Columbia Caledonia 23, 655 22 199 do Newport 49, 633 55 217 do Nasewappee 16, 633 7 182 Clark Burke 49, 633 55 224 Douglas Caledonia 23, 65 242 17 do Nasewappee 16, 633 7 234 Fond du Lae Lamartine 20, 399 20 242 Dout Katestown 36, 375 36 254	22	Ashland	Gordon	\$11, 726	12	
75. Bayfield Pisen 6, 257 6 106. Burfalo Dover 13, 865 14 113. do Mondovi 9, 759 16 113. do Mondovi 9, 759 16 113. Calumet Birch Creek 6, 855 7 151. Chippewa Hiscon 9, 975 16 161. Chippewa Hiscon 9, 975 16 205. Columbia Caledonia 23, 655 24 217. do Newport 6, 835 7 222. Douglas Summit. 16, 706 16 334. Dounn 6, 327 33 33 6, 337 33 34. Dunn 12 12, 800 12 12, 800 12 351. Eau Claire Blackwell 46, 327 32 33 345 14, 705 14 364. Jackson Abian 3, 451 5 37 33 364. Jackson Abian 14, 705 <td>30</td> <td>do</td> <td>White River</td> <td>16,673</td> <td>17</td>	30	do	White River	16,673	17	
100. Burnett. Dover. 15, 650 14, 773 124 Burnett. La Follette. 7, 770 8 139. Calumet. Brillion. 20, 825 200 151. Chippewa. Birch Creek. 6, 555 7 182. Clark. Hixon. 16, 656 24 205. Columbia. Caledonia. 23, 655 24 217. do Newport. 6, 630 6 242. Dane. Burke. 44, 523 54 304. Door. Nasewaupee. 16, 270 16 31. Forest. Blackwell. 6, 832 7 331. Go. Wabeno. 36, 327 36 333. Fond du Lae. Lamartine. 20, 509 22 336. Go. Actilita. 14, 796 16 456. Jackson. Atbion. 36, 375 36 333. Fond du Lae. Lamartine. 20, 599 22 366. Jackson. Atbibon. 36, 375 36	75	Bayfield	Pilsen	12 865	14	
13. Durbet La Folletie 7,770 882 224 139. Calumet Brillion 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,882 20,883 21,883 21,883 21,883 21,883 21,883 21,883 21,883 22,865 24,293 23,855 24,294 21,796 11,883 22,865 24,294 20,896 21,796 11,883 22,996 24,296 24,296 24,296 24,296 24,296 24,296 24,296 24,296 24,296 24,296 24,396	110	Bullaio	Mondovi	9 759	10	
	124	Burnett	La Follette	7,770	8	
151. Chippewa. Birch Creek. 6, 555 7 182. Clark Washburn. 9, 978 10 205. Columbia Caledonia. 23, 655 24 217. do Newport. 6, 030 6 242. Dane Burke. 49, 523 55 242. Dane Newport. 16, 070 16 234. Door Nasewappee. 17, 046 18 234. Donglas. Summit. 16, 270 16 234. Dunn. Forest. Blackwell. 6, 833 7 281. do Okffeld 16, 073 16 340. Jackson Ablon 36, 451 36 396. Grant Ablon 36, 451 36 450. Jackson Ablon 36, 451 36 511. do Kewaunee 20, 407 22 22 452. do Lisbon 16, 713 16 36 37 36 524. Juneau <td< td=""><td>139</td><td>Calumet</td><td>Brillion</td><td>20, 382</td><td>20</td></td<>	139	Calumet	Brillion	20, 382	20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	151	Chippewa	Birch Creek	6, 555	7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	182	Clark	Hixon	19,659	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199	do	washburn	9,978	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205	Columbia	Caledonia	23, 655	24	
242 Dane Burke 49, 523 54, 564 304 Door Nasewaupee 17, 966 18, 524 322 Douglas Summit. 16, 270 16, 270 324 Dounn Otter Creek 8, 990 6, 333 334 Dunn Otter Creek 8, 990 16, 270 331 Fonest Blackwell 16, 273 11 76 Forest Blackwell 6, 833 77 381 do Wabeno 36, 327 36 393 Fond du Lac Lamartine 20, 399 22 394 Jackson Ablon 36, 317 36 322 do Okfeld 16, 073 11 311 do Ixonia 15, 717 16 322 do Lislon 10, 308 10 324 Juneau Cutler 12, 850 12 325 La Crosse Hamilton 26, 022 26 608 Warinette Porterfield 15, 893 16 712 <td>217</td> <td></td> <td>Newport</td> <td>6,030</td> <td>6</td>	217		Newport	6,030	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	242	Dane	Burke	49, 523	10	
222 Dougans Other Creek 18, 500 6 331 Eau Claire Fairchild 12, 110 12 331 Forest Blackwell 6, 833 7 381 do Wabeno 36, 327 36 381 do Wabeno 36, 327 36 381 do Dougans 20, 399 20 396 do Oakfield 16, 073 16 432 Grant Watterstown 3, 451 36 432 Grant Watterstown 3, 451 36 450 Jackson Abion 15, 717 16 511 do Tornia 15, 717 16 532 do Lincoin Hamilton 26, 20 20 565 La Crosse Hamilton 26, 02 24 00 25 688 do Two Rivers 24, 202 2 26 263 Marinette Porterfield 15, 893 16 708 do Greenfield 5, 355	304	Douglas	Summit	16 270	16	
331. Eau Claire Fairchild 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 110 12 36 327 36 337 7 36 337 7 36 337 7 36 337 7 36 337 7 36 337 7 36 337 7 36 337 36 337 7 36 337 7 36 357 36 36 357 36 36 357 36 36 375 36 36 36 375 36 <t< td=""><td>334</td><td>Dunn</td><td>Otter Creek</td><td>8,990</td><td>g</td></t<>	334	Dunn	Otter Creek	8,990	g	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	351	Eau Claire	Fairchild	12, 110	12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	371	Forest	Blackwell	6, 833	7	
393 Fond du Lac Lamartine 20, 399 20, 399 396 do Oakfield 16, 073 16 396 do Watterstown 3, 451 5 486 Jackson Albion 36, 375 36 506 Jefferson Aztalan 14, 705 11 524 Juneau Cutler 12, 830 13 532 do Lisbon 10, 308 10 585 Kewaunee West Kewaunee 20, 022 22 608 Lincoln Harding 6, 404 6 623 Manitowoc Cooperstown 28, 173 22 638 do Two Rivers 24, 202 29 643 Marinette Porterfield 15, 893 16 708 do Westfield 9, 903 6 712 do Genenfield 5, 371 14 706 do Leon 12, 314 11 706 do Leon 12, 314 12 70	381	do	Wabeno	36, 327	30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	393	Fond du Lac	Lamartine	20, 399	21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	396	do	Oakfield	16,073	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	432	Grant	Watterstown	3, 451	2	
	486	Jackson	Albion	36, 375	30	
34 Juneau 12 12 12 130 13 532 11 1500 13 130 11 532 11 110 100 100 1100 11000 $1100000000000000000000000000000000000$	500	Jenerson	Aztalan	15 717	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	524	Juneau	Cutler	12 850	12	
558. Kewaunee. West Kewaunee. 20, 022 22 565. La Crosse. Hamilton. 26, 022 22 608. Lincoln Harding. 6, 404 6 623. Manitowoc. Cooperstown. 28, 173 22 638. .do Two Rivers. 24, 202 22 603. Marinette Porterfield 15, 893 16 708. .do Westfield 9, 094 9 712. .do Westfield 9, 094 9 724. Monroe. Glendale. 12, 314 11 726. .do Lecon 12, 314 12 726. .do Lecon 12, 314 12 770. Oneida. Hazelhurst. 5, 371 42 851. Polk Johnstown 13, 689 13 852. .do Laketown 10, 541 14 863. Portage Almond 15, 784 11 879. Price. Catawba 6, 300 44	532	do	Lisbon	10, 308	10	
565 La Crosse Hamilton 20, 022 608 Lincoln Harding 6, 404 623 Manitowoc Cooperstown 28, 173 623 Marinette Porterfield 15, 803 708 do Oxford 8, 903 712 do Oxford 8, 903 724 Monroe Glendale 12, 384 11 726 do Greenfield 5, 355 4 724 Monroe Glendale 12, 384 11 726 do Leon 12, 314 11 726 do Leon 12, 314 12 726 do Lakotown 13, 089 14 726 do Lakotown 10, 541 1 726 do Lakotown 10, 541 1 727 Oneida Harelhurst 5, 371 4 726 do Lakotown 10, 541 1 851 Polk Johnstown 13, 089 1 852 do P	558	Kewaunee	West Kewaunee	20, 407	20	
Construction Cooperstown 28, 173 22 623 Manitowoc Cooperstown 28, 173 22 663 do Two Rivers 24, 202 29 663 Marinette Porterfield 15, 893 16 708 do Oxford 8, 903 6 712 do Westfield 9, 094 6 724 Monroe Glendale 12, 384 11 726 do Greenfield 5, 355 4 730 do Leon 12, 384 11 770 Oneida Hazelhurst 5, 371 4 776 do Pelican 22, 514 2 851 Polk Johnstown 13, 689 11 863 portage Almond 15, 784 14 879 Price Catawba 6, 300 6 893 do Prentice 9, 655 14 894 Racine	565	La Crosse	Hamilton	6, 404	20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	623	Manitowoc	Cooperstown	28, 173	22	
708 do Oxford 8, 903 4 712 do Westfield 9, 094 9 724 Morroe Glendale 12, 384 11 726 do Greenfield 5, 355 4 730 do Leon 12, 314 11 770 Oneida Hazelhurst 5, 371 4 776 do Pelican 22, 514 22 851 Polk Johnstown 13, 089 11 862 do Laketown 10, 541 1 863 Portage Almond 15, 784 11 879 Price Qatawba 6, 300 4 893 do Prentice 9, 665 11 896 Racine Mount Pleasant 114, 049 11 987 Sauk Bear Creek 19, 286 22 1017 Sawyer Meteor 5, 660 11 1033 do Weirgor 10, 128 11 1037 Shawano <t< td=""><td>693</td><td>Marinette</td><td>Porterfield</td><td>15, 893</td><td>16</td></t<>	693	Marinette	Porterfield	15, 893	16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	708	do	Oxford	8,903	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	712	do	Westfield	9,094		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	724	Monroe	Glendale	12,384	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720	do	Loop	12 314	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	730	Oneida	Hazelhurst	5. 371		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	776	do	Pelican	22, 514	2	
852 do Laketown 10.541 1 863 Portage Almond 15,784 11 863 Portage Almond 15,784 11 863 Portage Catawba 6,300 6 893 do Prentice 9,655 14 899 Racine Mount Pleasant 114,049 11 918 Richland Sylvan 20,464 22 987 Sauk Bear Creek 19,936 22 1017 Sawyer Meteor 5,660 60 1018 do Ojibwa 12,307 11 1037 Shawano Hutchins 11,470 1 1071 Taylor Ford 6,675 10 1081 Goodrich 9,161 10 1082 Medford 26,479 22 1097 Trempealeau Pigeon 23,731 2 1084 Goodrich 9,161 10 1084	851	Polk	Tohnstown	13 089	1:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	852	do	Laketown	10, 541	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	863	Portage	Almond	15,784	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	879	Price	Catawba	6,300	1	
899 Racine Module Pressuit $11, 0.093$ 11 918 Richland Sylvan 20, 464 20 987 Sauk Bear Creek 19, 289 11 987 Sauk Bear Creek 19, 289 12 995 do Honey Creek 19, 936 22 1017 Sawyer Meteor 5, 660 60 1018 do Ojibwa 12, 307 11 1023 do Weirgor 10, 128 11 1037 Shawano Hutchins 11, 470 1 1071 Taylor Ford 6, 675 61 1072 do Goodrich 9, 161 9 1081 do Medford 26, 479 2 1096 do Spooner 5, 564 1172 1164 Washburn Guil Lake 4, 823 1169 1179 do Stone Lake 5, 778 1179 1198 Waukesha Ottawa 10, 924 1 1212. Wau	893	do	Prentice	9,655	11	
3.3 Accharate By Carlow 10, 289 11, 289 11, 289 11, 289 11, 289 11, 289 11, 289 11, 289 12, 367 11, 289 12, 367 11, 128 11, 128 11, 128 11, 128 11, 128 11, 128 11, 128 11, 128 11, 1470	899	Racine	Sylven	20 464	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	987	Sauk	Bear Creek	19, 289	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	995	do	Honey Creek	19,936	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1017	Sawyer	Meteor	5,660		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1018	do	Ojibwa	12, 307	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1023	do	Weirgor	10, 128	1	
	1037	Shawano	Hutchins	11, 470	1	
1081 do Medford 26,479 22 1097 Trempealeau Pigeon 23,771 2 1041 Washburn Gull Lake 4,823 3 1169 do Spooner 5,564 1172 do Stone Lake 5,778 1179 do Hartford 10,924 1 1212 Waukesha Ottawa 10,924 1 1212 Waupaca Larrabee 18,656 1 1254 Winnebago Utica 19,692 2	1071	do	Goodrich	9.161		
1097 Trempealeau Pigeon 23, 731 2 1164 Washburn Gull Lake 4, 823 1169 Spooner 5, 564 1172 do Stone Lake 5, 778 1179 Hartford 19, 242 1198 Waukesha 10, 924 1 1212 Waupaca Larrabee 18, 656 1 1254 Winnebago Utica 19, 692 2	1081	do	Medford.	26, 479	2	
1164 Washburn Gull Lake 4, 823 1169 do Spooner 5, 564 1172 do Stone Lake 5, 778 1179 do Hartford 19, 242 11 1198 Waukesha Ottawa 10, 924 1 1212 Waupaca Larrabee 18, 656 1 1254 Winnebago Utica 19, 692 2	1097	Trempealeau	Pigeon	23, 731	2	
1109	1164	Washburn	Gull Lake	4,823		
1179	1109	do	Stone Lake	5 778		
1179 do. Hartford. 19, 242 19 1198. Waukesha Ottawa. 10, 924 11 1212. Waupaca. Larrabee. 18, 656 11 1254 Winnebago. Utica. 19, 602 2	****	UV	Stored Linkverseesseesse	0,110		
1195 watkesha Ottawa 10, 924 1 1212 Waupaca Larrabee	1179	do	Hartford	19, 242	1	
1255 Winnebago	198	Waukesna	Larrahaa	10,924	1	
	1254	Winnebago	Utica	19,692	2	
				1, , , , , , , , , , , , , , , , , , ,	5	

¹ Data taken from basic analysis form.

A general discussion of random sampling methods is given in the appendix, page 207.

The numbering of the towns was the first task in commencing the actual selection of a sample. The 1,280 Wisconsin towns ⁸ were arranged alphabetically by and within counties, and then numbered consecutively. There was no important reason for an alphabetical arrangement of the towns. It rendered the location of data for the selected towns somewhat easier, but it was not prerequisite and the numbering could have followed any other scheme without affecting the remainder of the procedure.

Before the actual selection could be commenced it

was necessary to make some decision relative to the size of the sample to be taken. The size of the ultimate sample, as will be emphasized later, must be predicated upon the probable accuracy which it is desired to attribute to the resultant expansions. This decision cannot very well be made without some knowledge of the characteristics of the universe being sampled. Specifically it is necessary to have some idea of the dispersion of the individual members about their mean. In these circumstances it is convenient to draw a small sample and compute certain statistics which facilitate the determination of final sample size. The initial sample in this instance consisted of 64 towns or approximately 5 percent of the total number of such units in Wisconsin. This preliminary sample was fixed at 5 percent instead of some other proportion because previous investigation had disclosed some facts relative to the range of town data. If the universe had been differently constituted, either quantitatively or qualitatively, or both, the choice of the initial sample would have been altered accordingly. In other words, familiarity with the general nature of the data being analyzed is a practical advantage for which there is no entirely satisfactory substitute.

IMPORTANT FORMULAS EXPLAINED

It was necessary to consider total net expenditures only in the preliminary computations since the stability of the other data was believed to be of approximately the same order. A given sample will not, of course, yield exactly the same reliability in all the different categories of receipts and expenditures. The individual reliability of these statistics varies with their respective dispersions. The size of the final sample, therefore, will depend upon the degree of reliability that is believed necessary in estimating the most widely dispersed of the items to be tabulated. It follows that the less widely dispersed items will be estimated with correspondingly greater reliability.

Table 3 includes the planning survey expenditure data for the initial sample just described. In this

 TABLE 4.—Computations required in the calculation of standard deviation and arithmetic mean from table 3

Total net expenditures x	Fre- quency f	$(1) - M_a$ d	(2)×(3) fd	$(3) \times (4)$ fd^2
(1)	(2)	(3)	(4)	(5)
\$1,000 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 24 26 28 36 50 114	$ \begin{array}{c} 1\\3\\7\\7\\1\\4\\5\\2\\2\\1\\1\\5\\1\\1\\3\\7\\1\\3\\2\\1\\2\\1\\1\\2\\1\\1\\1\\2\\1\\1\\1\end{array}$	$\begin{array}{c} -12 \\ -10 \\ -9 \\ -8 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 8 \\ 9 \\ 9 \\ 11 \\ 13 \\ 21 \\ 13 \\ 5 \\ 99 \end{array}$	$\begin{array}{c} -12 \\ -30 \\ -63 \\ -24 \\ -27 \\ -24 \\ -25 \\ -12 \\ -15 \\ -4 \\ -1 \\ +5 \\ +2 \\ +35 \\ +38 \\ +27 \\ +22 \\ +13 \\ +42 \\ +36 \\ +99 \end{array}$	144300056719249144125484588115644243244243244244244244244244
	64		$\left\{\begin{array}{c} -217\\ +303 \end{array} = +86 \right.$	} 14,490

⁸ The seven Milwaukee County towns were numbered in regular order although they could have as easily been skipped inasmuch as they were not subjected to sampling for reasons outlined above.

PUBLIC ROADS

table the total net expenditures are shown in the last column to the nearest thousand dollars. This forms a preliminary step in the transition to table 4 and in addition provides a convenient tabulation of the computed values necessary for substitution in the formulas for the standard deviation and arithmetic mean com-puted by the so-called "short-cut" method. The necessary notation follows:

X = variable.

 M_x =mean value of X.

 M_a = assumed mean class interval.

f(x) = frequency of occurrence of X.

 $d = (x - M_a)$ deviation of each value of X from class interval of assumed mean.

 $N = \Sigma f = \text{total frequency.}$

 $\sigma =$ standard deviation.

 σ_M = standard error of the mean.

The important formulas are:

$$M_x = M_a + \frac{\Sigma f d}{N} \tag{1}$$

$$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \tag{2}$$

$$\sigma_M = \frac{\sigma}{\sqrt{N}} \tag{3}$$

In equation 2 the assumed mean should, for purposes of efficient calculation, be located as near the actual mean as possible while the correction term $\frac{\Sigma fd}{N}$ must be an algebraic summation with due care observed as to the sign of the individual terms, since the correction may be either positive or negative depending upon the location of the assumed mean.

Substituting the values from table 4 in these equations yields the following results:

$$= 15 + \frac{86}{64} = 16.344.$$

$$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left(\frac{\Sigma f d}{N}\right)^2} \dots (2)$$

$$=\sqrt{\frac{14490}{64} - \left(\frac{86}{64}\right)^2} = 14.987.$$

$$\sigma_M = \frac{\sigma}{\sqrt{\bar{N}}} \tag{3}$$

$$= 14.987/8 = 1.873.$$

If the coefficient of variation be used as a measure of reliability and defined as follows, it will provide a convenient index for comparing various size samples.

Let V = coefficient of variation (percent).

$$V = \left(\frac{3\sigma_M}{M_x}\right) 100 \dots (4)$$

In this case

$$V = \left(\frac{3 \times 1.873}{16.344}\right) 100 = 34.4$$
 percent.

The interpretation to be placed upon such a result is that in repeated trials, randomly drawn samples of the same size (5 percent) will seldom ⁹ vield means varying by more than 34.4 percent from 16.344. It is practically certain 10 that the true mean of the parent population lies between 16.344 ± 5.619 or between 10.725 and 21.963.

The practical problem which arises at this point is the determination of coefficients of variation for samples of different size. This first 5-percent sample produced a reliability as measured by this statistic of 34.4 percent. It is possible to effect a slight transformation in the basic equation for the coefficient of variation and derive an equation which will facilitate the calculation of acceptable estimates of the reliability which can be expected from larger samples randomly drawn from the same universe.

The original equation was:

$$V = \left(\frac{3\sigma_M}{M_x}\right) 100 \tag{4}$$

Substituting for σ_M the value given in equation 3,

$$V = \left(\frac{3\sigma/\sqrt{N}}{M_x}\right)100$$

which can be written

This equation affords an expeditious means of calculation since the numerator can through reasonable assumptions be made a constant for a given problem, and the denominator is a direct function of the number contained in the sample. The assumptions necessary are (1) that the σ computed for the initial sample is a satisfactory estimate of the dispersion of the parent population from which the sample was drawn, and (2)that the value of the mean obtained from this sample

TABLE 5.—Coefficient of variation of 5 to 75 percent samples of total net expenditures of Wisconsin towns, 1935, as calculated from initial sample of 64 towns

	Number in sample, N	$\frac{\sigma}{Mx} \div \sqrt{N}$
	04	34.4
	100	27 5
	121	25.0
1	144	22.9
	169	21.2
	196	19.6
	225	18.3
	256	17.2
	289	16.2
	324	15.3
	361	14.5
	400	13.8
	025	11.0
	900	9.2

 $V = \frac{300\sigma}{M_x} + \sqrt{N} = \frac{300 \times 14.987}{16.344} + \sqrt{N} = 275.0917767 \div \sqrt{N}$

 Presuming an infinite number of trials the variation would in the limit be greater only three times in a thousand.
 ¹⁰ Observe a literal construction of "practically certain" as opposed, for example, to absolutely certain. Practically certain as here used does not imply the impossibility of an adverse result; it merely is indicative of the relatively infrequent occurrence of mere averts. such events

FIGURE 1.—RELATION BETWEEN COEFFICIENT OF VARIATION AND SIZE OF SAMPLE.

will suffice temporarily as an estimate of the population mean. Both of these assumptions are justified.

RELATIONSHIP BETWEEN RELIABILITY AND SAMPLE SIZE EXAMINED

The necessary calculations were arranged in this case as shown in table 5. The range of sample sizes was limited to 5 percent increments from 5 percent to 75 percent, since the only purpose of these computations was to provide sufficient points upon which to base a freehand curve of the probable relationship between reliability and sample size for this particular inquiry. This curve is reproduced as figure 1.

The responsibility for determining the size of an acceptable sample is not a proper function of the statistician. It is an administrative problem the proper solution of which will depend upon the use to be made of the resultant expansions. The construction of a curve such as that shown in figure 1 is helpful in making a decision as to proper size of sample. It provides a graphical means of appraising various sample sizes in terms of their probable reliability. For purposes of illustration it was assumed in this case that acceptable accuracy called for a coefficient of variation of less than 20 percent.¹¹ It appeared, therefore, that a sample of 200 towns or approximately 15 percent would be required.

The additional towns selected to raise the total sample to 200 are listed with their expenditure data in table 6. These towns were selected in the same manner as the first 64 towns, but, it should be noted, without duplication. The final sample, therefore, was precisely the same as though it had been randomly selected at one time instead of in two portions. The geographical distribution of the initial and final samples is shown in figure 2.

Table 7 combines the rounded-off expenditure figures from tables 3 and 6 while table 8 fulfills the same function as table 4 in providing data necessary to the calculations which follow:

Again substituting in the basic equations,

$$M_{x} = M_{a} + \frac{2fd}{N}$$
(1)
= 15 + $\frac{255}{200}$ = 16.275.

 $^{11}\,{\rm This}$ is a purely abstract assumption and could as well have been any other percentage.

TABLE 6.—Expenditures of additional Wisconsin towns selected to complete final sample

Assigned	County	Town	Total net expenditures ¹		
No.	County	TOWN	Actual	Nearest \$1,000	
17	Adams	Strongs Prairie	\$3 596	4	
29	Ashland	Shanagolden	5 214	5	
32	Barron	Arland	11 939	12	
38	do	Crystal Lake	22 181	22	
39	do	Cumberland	22,472	22	
31	Bayfield	Cable	9,391	9	
36	do	Hughes	11,694	12	
37	do	Iron River	28,633	29	
73	do	Orienta	7,350	7	
)1	Brown	Humboldt	16, 311	16	
99	do	Suamico	30 178	30	
04	Buffalo	Canton	13, 246	13	
12	do	Modena	17,622	18	
16	do	Nelson	28,927	29	
121	Burnett	Dewey	9,910	10	
126	do	Meenon	9.316	9	
130	do	Sand Lake	7,461	7	
44	Calumet	New Holstein	19,919	20	
187	Clark	Lynn	10,818	11	
188	do	Mayville	18,991	19	
90	do	Mentor	14,984	15	
221	Columbia	Scott	13, 235	13	
224	do	Wyocena	17,945	18	
229	Crawford	Haney	16, 330	16	
230	do	Marietta	20, 512	21	
231	do	Prairie du Chien	6, 505	7	
237	Dane	Berry	13,878	14	
239	do	Blooming Grove	67, 560	68	
257	do	Perry.	13, 374	13	
201		Rutland	23, 950	24	
297	Door	Clavbanks	8.095	8	
310	Douglas	Bennett	9, 267	9	
323	do	Superior	29,646	30	
327	Dunn	Eau Galle	16,028	16	
329	do	Grant	12, 133	12	
330	do	Hay River	10,969	11	
344	do	Tiffany	11,200	11	
357	Eau Claire	Union	19, 555	20	
508		Washington	23, 687	24	
5/0	Forest	Laona	47, 180	47	
379	do	Popple River	8,715	9	
389	Fond du Lac	Empire	18, 559	19	
	do	Forest	15,500	16	
100	(l)	Taycheedah	14, 429	14	
111	Grant	Cassville	15, 559	16	
110	do	Tittle Crent	10,413	10	
195	do	Porio	8, 515	9	
436	Green	1 dome	16 590	14	
149	do.	Sylvester	16, 558	17	
158	Green Lake	Morguette	11.055	10	
464	Lowa	Clydo	12 024	12	
465	do	Dodgovillo	26 449	14	
466	do	Eden	8 582	30	
468	do	Linden	17 380	17	
473	do	Ridgeway	19 318	10	
193	Jackson	Franklin	9.792	10	
501	do	Melrose	14, 301	14	
510	Jefferson	Hebron	13, 377	13	
516	do	Oakland	18, 332	18	
599	Tunogu	Aumonia	10.005		
523	do	Armenia	13,027	13	
525	do	Finlow	10,751	11	
530	do	Lomonwoir	0,000	8	
535	do	Necedah	32 070	9	
344	Kenosha	Pleasant Prairie	71 446	00	
552	Kewaunee	Franklin	10 326	10	
569	La Crosse	Washington	5,080	19	
			1 0,000	. 0	

1 Data taken from basic analysis form, line 37, column J.

TABLE 6.—Expenditures of additional Wisconsin towns selected to complete final sample—Continued

Assigned	C. martin	(T)	Tota	al net ditures
No.	County	TOWN	Actual	Neares \$1,000
570	Lafavette	Argyle	13.293	1
572	do	Benton	15,991	1
581	1do	New Diggings	19,876	2
582		Seymour	13,948	1
605 _	Lincoln	Birch	6.811	-
609	do	Harrison	8,464	
615	do	Schley	15,471	I
634	Manitowoc	Rorn	20,017	2
0.11	ivi di dettori	17(111	1,011	
663	do	Knowlton	14,178	1
725	Monroe.	Grant	5,688	
740	do	Little River	0, 043 96 ut 1	9
756	do	Maple Valley	18, 592	1
784	Oneida	Woodboro	9,005	
798	Outagamie	Kaukauna	9,102	
799	Ozoukoo	Grafton	9,315	1
829	Pierce	Martell	13, 772	1.
831		River Falls	24,738	2
838	do	Farmington	12 050	2
859	do	St. Croix Falls	18,340	1/
868	Portage	Dewey	10,678	1
894	Price	Spirit	7,209	
898 014	do	Orion	19,580	20
916	do	Richwood	12,428	15
917		Rockbridge	16, 460	If
000	Del	Tolymost a man	14 000	
929	do	Lima	14.028	10
932	do	Magnolia	16, 615	17
947	Rusk	Grant	17,602	18
957	do	Strickland	10,174	10
908	do	Thornannle	17 213	17
967.	St. Croix	Cylon	10, 736	11
971	do	Forest	14,773	17
984		Troy	16, 046	10
986	Sauk	Baraboo	23.041	25
1004.	_ do	Washington	25, 910	26
1010	Sawyer	Draper	20,464	20
1014	-00 do	Round Lake	14,100	[-] [4
1028	Shawano	Barteline	6.678	7
1040	do	Morris	11,307	14
1052	Sheboygan	Holland.	35, 947	30
1009	do	Holway	8,979	1.4
10/10/			10,001	1.1
1079	do.	McKinley	10, 807	11
1091	Trempealeau	Chimney Rock	14, 645	15
1195	Vernon	Sterling	22, 397	29
1125	Vilas	Boulder Junction	11,906	12
1128	do	St. Germain	8,963	9
1152	Walworth	Long Lako	10,907	17
1166	do	Madge	7,025	7
1175	Washington	Barton	11,880	12
1104	4.	(Duran farm	10.000	
1206	Wainaca	Dupont	17, 893	17
1218	do	Royalton	15,651	16
1220	do	Scandinavia	12, 366	12
1225	Waushara.	Aurora	14,734	15
1241	Winnebago	Omro	20, 120	20
1277	Wood	Seneca	8,965	9

It is now possible to say that in repeated trials, randomly drawn samples of 200 towns will seldom yield means varying by more than 15.34 percent from 16.275. It is practically certain, therefore, that the population mean lies between $16.275 \pm 3(0.832)$ or between 13.779 and 18.771.

The formulas which were applied in the calculation of the sampling error in total net expenditures are equally applicable to the determination of error in estimating any other statistics. Ordinarily the same sample should be used in estimating all data pertaining to the same class of governmental units for a given fiscal period. The dispersion of the various items may vary considerably, and consequently, as was previously em-

Figure 2.--Geographical Distribution of Initial and Final Samples

phasized, the choice of sample size should be governed by the minimum reliability required in the estimation of the most widely dispersed of the statistics tabulated. This procedure will necessarily result in a higher degree of reliability in certain items than might otherwise be required, but it is nevertheless the only practicable way sampling can be efficiently employed. If separate samples were to be used for different statistics the clerical work involved would increase and could easily dissipate the savings that would otherwise accrue through the use of sampling procedures. It was not feasible in the present instance to present complete calculations for statistics other than total net expenditures. Table 9 has been included, however, to provide some indication of the relative stability of other important receipt and disbursement classifications.

The method of obtaining the results shown in table 9 are as follows:

The mean (M_x) of total net expenditures of the 200 Wisconsin towns selected for the final sample was found to be \$16,275. There were 1,273 towns in the class to

 TABLE 7.—Frequency distribution of net expenditures of initial and final samples of Wisconsin towns taken from tables 3 and 6

Total net ex- penditures	First 64 towns	Second 136 towns	Total 200 towns	Total net ex- penditures	First 64 towns	Second 136 towns	Total 200 towns
\$1,000 35 6 7 9 10 11 12 13 14 15 16 18 19 20	$\frac{1}{3}, \frac{3}{7}, \frac{1}{3}, \frac{4}{5}, \frac{5}{3}, \frac{5}{5}, \frac{2}{2}, \frac{1}{1}, \frac{1}{5}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}, \frac{3}{7}, \frac{1}{7}, \frac{1}{7}, \frac{3}{7}, \frac{1}{7}, \frac$	2 2 7 4 14 4 9 9 8 8 11 7 10 8 5 5 8	$ \begin{array}{c} 1 \\ 9 \\ 10 \\ 5 \\ 18 \\ 18 \\ 9 \\ 12 \\ 12 \\ 14 \\ 10 \\ 12 \\ 8 \\ 15 \\ 9 \\ 6 \\ 8 \\ 15 \\ 1$	\$1,000 2122 2324 242522 2522 2627 2828 2923 3038 3038 3647 5068 71 114	1 3 2 1 2 1 2 1 1	2 3 1 1 1 1 1 1 1 1 1 1 1	2 3 3 2 0 0 0 1 1 3 3 2 1 1 4 4 4 4 1 1 1 1

which the 200 yielding this mean expenditure belonged. The expanded figure representing the over-all expenditures of the group is \$20,718,075 and results from multiplying the mean, \$16,275 by the number of towns, 1,273. The dissimilarity of the seven Milwaukee County towns was noted at the outset and it was remarked that it would be necessary to obtain actual data for all of them. The total net expenditures of these towns as shown in column 4 of table 9 was \$1,423,660 which, added to the expanded figure for the 1,273 towns described above, provides a State total of \$22,141,735 as shown in column 5. This latter amount

TABLE 8.—Computations required in the calculation of standard deviation and arithmetic mean from table 7.—Continued

Total net expenditures	Frequency f	$(1) - M_a$ d	(2)×(3) fd	$(3) \times (4)$ fd^2
(1)	(2)	(3)	(4)	(5)
\$1,000	1		-12	144
56	5 9 10	-10 -9 -8	$-50 \\ -81 \\ -80$	500 729 640
9	5 18	$-7 \\ -6 \\ -5$	$-35 \\ -108 \\ -45$	245 648 225
10 11 12	12 14	-4 -3	$-48 \\ -42 \\ -20$	192 126 40
13 14 15	10 12 8	$-2 \\ -1 \\ 0 \\ 1$	-12	12
10 17 18	9	234	13 18 18	36 54
19 20 21	15	567	75 12	375 72
22 23 24	3 2 6	89		128 486
25 26 27	3	10 11 12	10 33 12	363 144
28 29 30	32	13 14 15		109 588 450
31	1	16 17 18	18	324
34	4	19 20 21	84	1,764
37		22 23 24		
40 47 50	1	25 32 35	32 35	1, 024 1, 225
68 71 134	1 1 1	53 66 99	53 66 99	2,809 4,356 9,801
	200		$\begin{cases} -533 \\ +788 = +255 \end{cases}$	28,059

was more than the known State total of \$21,966,309 by \$175,426 which facts are shown in columns 6 and 7 respectively. As shown in column 8 this is a relative error of +0.8 percent.

SUMMARY

It is taken for granted that sampling would not ordinarily be undertaken where complete data are already available in the form desired. Consequently, in practical operations, it would be impossible to ascertain the actual error in expansions like those illustrated above. The only practical indices of error which can be derived are those predicated upon theories of probability. In the case of the present expansions complete data were available and it is, therefore, possible to compare the error which mathematical reasoning had indicated as a maximum which it was practically certain would not be exceeded, with the actual error which resulted.

In table 2 it was shown that the total net expenditures of Wisconsin towns for 1935 as developed from the reports of the entire 1,280 units amounted to \$21,966,309. In table 9 it is shown that the corresponding figure resulting from this particular sampling experiment was \$22,141,735. This difference of \$175,426 or approximately 0.8 percent was much less than the coefficient of variation calculated from the sample of 200 units. The careful interpretation of this difference is of utmost importance. With such a result as a precedent there might be a tendency to assume that too great conservatism had been injected into the procedure, and that in reality much smaller samples could be relied upon to yield satisfactory expansions. This would be an unfortunate attitude to cultivate, for it overlooks certain fundamentals of probability theory.

In random sampling the most unbiased method will occasionally produce the most biased selection possible, while conversely, the most biased of sampling methods will now and then yield a sample that would satisfy every test for freedom from bias. It is a question of the frequency of particular results when an infinite, or at least a very large number, of trials are made. Even when a theoretically unbiased sampling method is employed it should be evident that the exact error can neither be foretold, nor indeed measured at all, save by tabulating all of the data, which procedure would, of course, completely vitiate the whole sampling attempt. The important consideration is, or should be, the relative frequency with which a biased selection can be

TABLE 9.—Expansion of means obtained from sample of 200 Wisconsin towns together with a comparison of actual and relative errors resulting from the procedure

Itan	Average (from sample	Expansion excluding	Milwaukee	Expanded to	Actual State	Deviation of e actual St	expanded from ate total
item	of 200 towns)	County, 1,273×col. 2	County	col. 3+col. 4	total	Absolute, col. 5-col. 6	Relative, col. 7÷col. 6
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Local revenues: (13D) Highway (13J) Total	\$845 8, 180	\$1, 075, 685 10, 413, 140	\$24, 167 688, 645	\$1,099,852 11,101,785	\$1, 140, 305 10, 672, 104	-\$40, 453 +429, 681	Percent -3. 5 +4. 0
Nonlocal revenues: (25D) Highway	1, 600 7, 750	2, 036, 800 9, 865, 750	23,618 674,530	2, 060, 418 10, 540, 280	2, 152, 891 10, 626, 656	92, 473 86, 376	-4.3
All current receipts: (29D) Highway (29J) Total	2,430 16,710	3, 093, 390 21, 271, 830	47,7851,366,028	3, 141, 175 22, 637, 858	3, 333, 196 22, 395, 653	-192,021 +242,205	5.8 +1.1
Net expenditures: (37D) Highway	3,875 16,275	4, 932, 875 20, 718, 075	326, 096 1, 423, 660	5, 258, 971 22, 141, 735	5, 485, 159 21, 966, 309	-226,188 +175,426	-4.1 +.8

expected through the use of a given sampling procedure on the particular data available. It should be obvious that the frequency theory is only important as it affects the chances of bias in the single selection which is ordinarily drawn. The actual error in a single selection may be any size whatever, and this fact must be recognized if erroneous conclusions are to be avoided. Theories of probability are helpful, however, even though but one sample is drawn instead of an infinite number.

The problem may be likened to one of the betting odds against the occurrence of a certain event such as the toss of a coin yielding a head, or the rolling of a die producing a four. Assuming freedom from bias in each case the odds against a head in the toss of a coin would be even or 1 : 1, and against a four in the roll of a die 5 : 1. Similarly, the odds against the occurrence of errors larger than certain specified departures from actuality can be calculated for the present sampling inquiry in exactly the same fashion in which it is done for coin tossing and die rolling experiments. The data in table 10 have been arranged to demonstrate these relationships.

TABLE 10.—Probability of occurrence of theoretical errors in
statistics abstracted from sample of 200 Wisconsin towns in
comparison with actual errors

		Probat	ole error		Actual
Classification of item	$\frac{3\sigma}{(0.9974)}$	2σ (0.9546)	σ (0.6826)	P.E. (0.5000)	error
(13) Local revenues: Highway. Total	Percent 34. 4 22. 8	Percent 23.0 15.2	Percent 11. 5 7. 6	Percent 7.7 5.1	<i>Percent</i> -3.5 +4.0
(25) Nonlocal revenues: Highway Total	18. 0 12. 4	$\begin{array}{c} 12.\ 0\\ 8.\ 3\end{array}$	6. 0 4. 1	$\frac{4.0}{2.8}$	-4.3 8
(29) All current receipts: Highway Total	$19.8 \\ 16.5$	13. 2 11. 0	$6.6 \\ 5.5$	$\frac{4.4}{3.7}$	-5.8 +1.1
(37) Net expenditures: Highway Total	$15.5 \\ 15.3$	$ \begin{array}{r} 10.3 \\ 10.2 \end{array} $	$5.2 \\ 5.1$	$3, 5 \\ 3, 4$	- 4.1 +.8

The important conclusion to be obtained from this presentation is that the reliability of a sample cannot be improved by using less standard errors of the mean as a criterion for an acceptable sample. It is true that by being less conservative and permitting a choice of sample size to rest upon calculations using a single standard error of the mean, the resultant expansions will, apparently, be closer approximations of the actual totals. This improved accuracy is only apparent, however, since the odds against the error being of greater magnitude decrease with the number of standard errors used in determining the range. In the final analysis it is entirely a question of point of view; and a preference for one, two, or three standard errors of the mean is a matter of individual choice without substantial significance, providing it is understood that the probabilities are correspondingly altered and overoptimism is not engendered to the extent that too small a sample is selected.

APPENDIX

The method suggested in this article of selecting a sample by means of "Tippett's Numbers" opens up a

field of inquiry that in itself is sufficiently extensive to require separate treatment. It is appropriate to discuss here a few of the reasons for the use of random sampling numbers.

By way of introduction it is pertinent to inquire exactly what is meant by a "random" sample. The statistical concept of randomness cannot be defined merely as the absence of design or purpose. It is not, as its name appears to suggest, the result of caprice. A definition sufficiently rigorous to satisfy the mathematician would fail in most respects to appease the lay reader. If, as is usually true, a random sample is taken to mean an unbiased sample, then the concept of randomness must be approached through a consideration of sampling methods rather than individual samples. It is the method that is biased or unbiased rather than particular samples drawn by that method.

An unbiased method is merely one which, repeated a very large number of times (theoretically an infinite number), rarely produces a biased sample. It is clear that defined in this manner the question of whether methods are biased or unbiased largely depends upon the frequency theory of probability. If it can be established either empirically or inductively that a given method of sampling produces a biased sample very infrequently, then by definition, such method may be termed a random method and samples produced through use of the method will be random samples. While all samples, as thus defined, will be random samples, they will by no means all be unbiased. The apparent inconsistency is not real since the definition for an unbiased method in nowise precludes the possibility of a biased drawing, but merely stipulates that such occurrences will be experienced relatively infrequently.

There is still another aspect of unbiased or random methods of selection that should be fully appreciated; and this is that a biased result may occur at any point in an infinite series of trials. There are no mathematical propositions upon which to base prognostications of the point at which a biased drawing will occur. It is important to remember this because in actual practice nothing approaching an infinite number of samples is drawn. In fact, usually but a single drawing is made and conclusions derived therefrom are attributed to the entire population from which the drawing was made.

A random sample, then, is one produced by a random method of selection. A random method is usually taken to mean an unbiased method, that is, a method which infrequently yields a biased result. A biased result, however, may as easily occur one time as another (including the first time) in an infinite number of trials, the exact incidence of occurrence being utterly unpredictable.

With meticulous regard for the foregoing distinctions, consideration may be given to the problem of drawing randomly. Stated in mathematical form, a random method is one in which every selection of M objects from an original N is equally probable. This is a task that is deceptive in its apparent simplicity. If rigorous mathematical treatment is adhered to, there are few statistical problems more difficult of practical accomplishment. It is clear that whatever other expedients are resorted to it will not suffice to leave the matter of selection to human discretion. This is true even when the individuals concerned are imbued with a conscious desire to avoid bias, are unaware of predispositions of any kind, and are above suspicion so far as intellectual honesty is concerned. The remarks of two leading English authorities, Kendall and Smith, are worth quoting in this particular connection.

* * * House-to-house sampling, the sampling of crop yields, even ticket drawing have all been found to give results widely divergent from expectation. Apart from theoretical considerations, there is thus practical evidence to show that it is insufficient to define a random method as one free from purposive selection. The criterion of randomness in selection must be of a more objective kind.

For the purpose of the discussion we require, at this point, a notion of independence. For the present we take this concept to be undefined, merely noting that it may be expressed in terms of probability. With its aid we may define a random method of selection, applied to the characteristic C of a Universe U, as a method which is independent of C in U.

It is important to notice that this definition of random selection relates to a particular characteristic which is under consideration. There is no such thing as a random method of selection *per se*, considered apart from the universe whose members are being selected. A method which would be random for one universe is not necessarily random for another, and even within the same universe a method which is random in respect of one characteristic is not necessarily random in respect of another. This accords with general ideas on the subject. For example,

This accords with general ideas on the subject. For example, a possible method of sampling inhabitants of a street is to take, say, every tenth house. This may give a random sample, but if every tenth house is a corner house, the sample may, or may not, lose its randomness. To decide this point, we shall have to consider the properties of the universe which are under investigation. If we were inquiring into the proportion of inhabitants with blue eyes, it might be sufficient to take the corner houses, on the assumption that the color of eyes was independent of geographical location. On the other hand, if we were sampling for income, the method might fail, since corner houses have, in general, higher rents and rates than others, and we should therefore expect to find them inhabitated by people with larger incomes.

A practical question of great importance which arises in this connection is: How are we to determine whether a given method is independent of a given characteristic? The answer is that we cannot determine it without doubt, for to do so would require a full knowledge of the universe; and this is almost always in practice denied us, for otherwise there would be no point in a sampling inquiry. The assumption of independence must therefore be made with more or less confidence on a priori grounds. It is part of the hypothesis on which our ultimate expression of opinion is based.¹

Ample evidence to substantiate Kendall and Smiths' recommendation against the use of so-called random methods of sampling involving the selection of every nth variate of an array has accumulated during the progress of the State-wide Highway Planning Surveys. To mention but one instance, the sampling of motorvehicle registrations by taking each license number ending in naught was found quite unsatisfactory. It is useless to speculate upon the reasons for the bias which occurred, but important to note that it did occur in spite of a popular belief that the method was entirely adequate and practical.

Virtually the only situation in which the selection of every nth variate would fulfill the general requirements for an unbiased method would be where the variates were arrayed in random order at the outset. The sampling process would then consist merely in choosing the necessary number of variates, taking them in a block from any part of the array. This presupposes the existence of randomness in the arrayed order of the variates prior to selection, a condition seldom if ever satisfied. In fact the entire problem arises precisely because raw data as they are usually assembled are not randomly arrayed. Data tend to become what is termed "packaged" or grouped together in various

 4 M, G. Kendall and B. Babington Smith, Journal of the Royal Statistical Society, vol. 101, p. 151, 152,

and sundry ways. Sometimes packaging in data is readily discovered merely by inspection, while at other times its detection is extremely difficult.

Granted that the method of drawing every nth variate lacks virtue, consideration may be given the alternative chiefly resorted to prior to the advent of random sampling numbers, that is, lottery devices. These methods involve the same initial step necessary in the case of sampling by random numbers, the superimposing of an additional and independent characteristic upon the members of the universe. This is accomplished by numbering the members in any convenient way. Tickets, cards, marbles, beads, capsules, and an infinitude of similar media are numbered to correspond and placed in a variety of contrivances that supposedly effect thorough shuffling. Practical experi-ments, however, have demonstrated that it is impossible to mix balls or shuffle cards sufficiently to effect randomness in their arrangement. Speaking of this problem Karl Pearson of the University of London says,

* * The dice of commerce are always loaded, however imperceptibly. The records of whist, even those of long experienced players, show how the shuffling is far from perfect, and to get theoretically correct whist returns we must deal the cards without playing them. In short, tickets and cards, balls and beads fail in large scale random sampling tests; it is as difficult to get artificially true random samples as it is to sample effectively a cargo of coal or of barley.²

It is evident that what is needed is an unbiased method of sampling that will overcome the deficiencies of the alternative methods that have been discussed. A method is needed that will overcome the theoretical objections surrounding the taking of every nth variate of an array, and at the same time one that will avoid the practical difficulties involved in devising and operating an adequate shuffling mechanism for the randomizing of tickets, capsules, beads, etc. Fortunately, both objectives may be accomplished by the use of random sampling numbers.

Random sampling numbers are tables of numbers, the digits of which have been selected by unbiased methods. Presumably they represent a random set of possible ordinals. Until recently, relatively few tables have been offered, but a number of methods of producing satisfactory sets have been devised, including some very refined processes. There are a number of technical requirements to be satisfied in constructing a set of numbers, and there is still a measure of disagreement among students as to the necessary and sufficient tests that must be applied. The fact that no set of numbers has received the unqualified endorsement of all investigators is a circumstance of little consequence insofar as the present use of certain of these tables is concerned. The numbers of Tippett, Kendall and Smith, and possibly others, are entirely satisfactory.

One of the conditions to be satisfied by a set of random sampling numbers is "local randomness". The concept of local randomness arises from the necessity of distinguishing between a random table of numbers and a table of random numbers. Any set of numbers are random in the sense that they could have resulted from a random selection. A set of one million zeros might even have been produced by an unbiased method. Subsets of numbers drawn from such tables would not necessarily, in fact almost certainly would not, be

(Continued on page 212)

² Karl Pearson, in foreword to Random Sampling Numbers, by L. H. C. Tippett, No. XV, Tracts for Computers. Cambridge University Press, London, 1927

EFFECT OF GLASSY SLAG ON THE STABILITY AND RESISTANCE TO FILM STRIPPING OF **BITUMINOUS PAVING MIXTURES**

REPORTED BY THE DIVISION OF TESTS, PUBLIC ROADS ADMINISTRATION

THERE appears to be a considerable difference of | sized to pass the No. 8 sieve. No attempt was made to slag as a road-building material as to the amount of the fine aggregate in preparing all the mixtures for the

opinion in the various States that use blast-furnace determine its glassy-particle content. It was used as

restriction that should be placed on the percentage of glassy particles in slag aggregates for bituminous paving mixtures. This difference of opinion is reflected in the specification requirements of the States concerned. Several States that use slag place no restriction whatsoever on the amount of glassy material. Others allow various maximum percentages from 20 percent in some cases down to 10 percent in others. A third group of States words its specifications in such a way as virtually to prohibit the inclusion of any appreciable percentage of glassy particles.

As generally understood, glassy particles are those that by visual inspection appear to be composed of

more than 50 percent of glassy material. They are characterized by a vitreous to waxy luster and are therefore easily distinguished from the rough-textured cellular material that usually comprises the major portion of blast-furnace slags. Glassy particles have been considered detrimental because it was feared that their smooth surface texture would impair the stability of bituminous mixtures and that the bituminous film would not adhere to them in the presence of water.

The investigation which is the subject of this report was undertaken to determine whether the stability and resistance to film stripping of bituminous paving mixtures prepared from slag aggregates were affected materially by the glassy-particle content of the slag.

The seven samples of slag used in the investigation were furnished by the National Slag Association and were obtained from representative plants in Ohio, Pennsylvania, and New York. They were normal materials for the plants that produced them and while not necessarily representative of slag aggregates for the entire country, they were typical of material produced in the areas from which they came. Samples 1 to 6 were composed of various proportions of glassy and nonglassy particles all retained on the No. 4 sieve. The percentage of glassy particles in each was determined by hand sorting the entire samples and weighing the glassy and nonglassy fractions. The fractions were then stored in separate containers and used either separately or recombined in definite proportions for the various tests to be described. Sample 7 was a slag sand

In the various States that use blast-furnace slag as a road-building material, there appears to be considerable difference of opinion as to the amount of restriction that should be placed on the percentage of glassy particles in slag aggregates for bituminous paving mixtures. Glassy particles have been considered detrimental because it was feared that their smooth surface texture would impair the stability of bituminous mixtures and that the bituminous film would not adhere to them in the presence of water.

From an investigation to determine whether the stability and resistance to film stripping of bituminous paving mixtures prepared from slag aggregates were affected materially by the glassy-particle content of the slag, it was concluded:

1. The susceptibility to film stripping of the mixtures containing the six slags that were tested was not affected materially by variations in the content of glassy particles.

2. For bituminous mixtures containing 0, 15, and 30 percent of glassy particles in the fraction retained on the No. 4 sieve, the percentage of glassy material did not have a significant effect on stability.

3. The tests furnish no indication that specification requirements placing drastic limitations on the glassyparticle content of slag aggregates for bituminous concrete are necessary.

stability tests but was not used in the mixtures for the film-stripping test since these mixtures contained only material passing the ³/₈-inch sieve and retained on the No. 4 sieve.

The percentages of glassy particles contained in plant samples 1 to 6 inclusive, as determined in the Public Roads laboratory, were as follows:

Slag	No.:	Glassy particles, percent
	1	22
	2	17
	4	21
	J	22
	0	. 2.)

FILM-STRIPPING TESTS MADE ON INDIVIDUAL FRACTIONS AND ON BLENDS

From each of the six slags listed above, three classes of bituminous mixtures were prepared for

the film-stripping test. The first contained only the nonglassy fraction; the second contained the same proportions of nonglassy and glassy particles as were found in the plant samples; and the third contained only glassy particles. A complete series of mixtures was made with each of four bituminous materials, namely, RC-3 cut-back asphalt, 85-100 penetration asphalt, and road tars RT-6 and RT-9. All the mixtures contained 5 percent by weight of bituminous material and 95 percent by weight of aggregate. The aggregates were sized to pass the ³/₈-inch sieve and be retained on the No. 4 sieve. All the mixtures were oven-cured for 24 hours at a temperature of 140°F. before testing.

The stripping test was made in an apparatus similar to that described by Victor Nicholson in the Proceedings of the Association of Asphalt Paving Technologists, January 1932, page 43.¹ Certain modifications of the described machine were made such as the installation of an electric heater and thermostat in the bath and the provision of a variable-speed motor and odometer to permit variation of the number of turns obtained during the 60-minute normal test period. The rate of rotation used in these tests was 45 revolutions per minute.

The amount of stripping was recorded at 15-minute intervals during the 60-minute test period. The test temperatures were: For the first two 15-minute periods, 77° F.; for the third 15 minutes, 100° F. and for the

¹ See also Report of Committee on Characteristics of Asphalts, by E. F. Kelley, Chairman. Proceedings of The Highway Research Board, 1937, pp. 329 to 333.

fourth and final 15 minutes, 120° F. The degree of stripping at each time of observation was recorded as follows:

- N=no stripping;
- VS = very slight stripping (minute breaks showing in film);
- S=slight stripping (dots of bare stone showing); B=bad stripping (¼ of the aggregate surface exposed); and
- VB=very bad stripping (more than ¼ of aggregate surface exposed).

In order to facilitate comparison of the behavior of the various test mixtures, two methods of assigning numerical ratings based on the test results were devised. In both methods the numerical values, 100, 90, 70, 40, and 0 were assigned to the five degrees of stripping—N, VS, S, B, and VB, respectively.

In the first method of rating (see table 1) the observed condition of the samples after 30 minutes of rotation at 77° F. was taken as the criterion of behavior and the numerical value previously assigned to the degree of stripping observed was used as the rating index.

In the second method (see table 2) the numerical values corresponding to the various degrees of stripping observed at the four stages of the test were averaged to give a rating index. By either method, the best possible rating would be 100 corresponding, in the first, to "no stripping" after 30 minutes rotation at 77° F. and, in the second, to "no stripping" after 15, 30, 45, and 60 minutes while the temperatures at the respective observation times were 77° F., 77° F., 100° F. and 120° F.

The results of the stripping tests on the entire series of mixtures using the first method of rating, as shown in table 1, indicate that the type and consistency of the bituminous material affected the amount of stripping

TABLE 1.—Results of stripping tests for one test condition 1 (rating method 1)

	-uos	Rating in	the	stripping tes	t for	slag aggregat	es m	ixed with		tests
Słag No.	particle of tent	RC-3		85–100 pene tion aspha	tra- ilt	RT-6		RT-9)	of all t
	Glassy-I	Observed	Index	Observed	Index	Observed	Index	Ob- served	Index	Average
1 2 3 4 5 6	0 0 0 0 0 0	Slight do do do do Very slight Slight	70 70 70 70 90 70	Very slight 	90 90 70 70 70 90	Baddo Very bad Baddo	$ \begin{array}{r} 40 \\ 40 \\ 0 \\ 40 \\ 40 \\ 40 \end{array} $	Slight Bad do Slight Bad	$70 \\ 40 \\ 40 \\ 40 \\ 70 \\ 40 \\ 40$	57
Aver- age			73		80		27		50	
1 2 3 4 5 6	$22 \\ 22 \\ 17 \\ 21 \\ 22 \\ 25$	Slight Very slight do do do do Slight	70 90 90 90 90 70	Very slight do do do do do	90 90 90 90 90 90	Very slight Slight Bad Slight do	90 70 70 40 70 70	Bad do do do do do	$ \begin{array}{r} 40 \\$	70
A ver- age			83		90		68		40	
1 2 3 4 5 6	$ \begin{array}{r} 100 \\ 1$	Slight do do do Very slight do	70 70 70 70 90 90	Very slight do do do do do	90 90 90 90 90 90	Bad do Very bad do do do		Baddo do do do do	$ \begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \end{array} $	55
A ver- age			77		90		13		40	

¹ Test condition: Temperature, 77° F.; time of rotation, 30 minutes.

TABLE 2.—Results of stripping tests for four test conditions ¹ (rating method 2)

		Rati	ng in the aggrega	strippin tes mixe	g test for d with—	r slag
Slag No.	particle content	RC-3	85–100 pene- tration asphalt	RT`-6	RT-9	Average of all tests
1 2. 3. 4. 5. 6.	0 0 0 0 0 0	58 58 50 60 73 68	78 78 50 50 68 73	28 28 0 0 28 33	60 33 33 33 50 33	47
A verage		61	66	20	40	
1 2 3 4 5 6	22 22 17 21 22 25	58 78 63 63 63 63 58	85 85 63 73 85 85	$63 \\ 50 \\ 50 \\ 20 \\ 45 \\ 45 \\ 45$	28 28 28 28 43 43	55
A verage		64	79	46	33	
12 34 456	$ \begin{array}{r} 100 \\ 1$	$50 \\ 50 \\ 40 \\ 50 \\ 63 \\ 63 \\ 63$	78 78 63 63 73 78	$20 \\ 28 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	28 28 28 28 43 28	41
A verage		53	72	10	31	
A verage		53	72	10	31	

 1 Condition observed at 15-minute intervals while test temperature is 77° F. for 30 minutes, 100° F. for 15 minutes, and 120° F. for 15 minutes.

to a much greater extent than did the variations in the glassy-particle content of the slag aggregate. In fact, no consistent and significant difference in the resistance to stripping appeared to result from the complete exclusion of glassy particles or the inclusion of 100 percent glassy particles in the mixtures with any of the bituminous materials. The most startling result of the tests was the fact that, in 22 out of 24 sets of samples where the only variable considered within the set was the glassy-particle content, the mixtures containing blends of glassy and nonglassy particles showed resistance to stripping equal to or greater than that shown by the mixtures containing all nonglassy particles; and that in 20 out of 24 cases, the mixtures containing all glassy particles resisted stripping as well as, or slightly better than those containing all nonglassy particles.

than those containing all nonglassy particles. The ratings obtained by method 2, as shown in table 2, are generally similar in the group relationships to those of table 1, although the numerical values are nearly all lower. It should be realized that the ratings in both tables are based on visual estimates of the extent of the stripping. Thus, they are, at best, only approximately quantitative and for that reason, slight differences in the ratings of individual samples should not be given too much consideration. However, the test results by groups of samples show a fair degree of consistency and, from these group relationships, it is concluded that the percentage of glassy particles in the slag aggregate has no important influence on stripping.

STABILITY TESTS MADE ON MIXTURES CONTAINING 0, 7.5, AND 15 PERCENT GLASSY PARTICLES

Both roller stability and Stanton-Hveem stability tests were made on a series of slag-asphalt concrete mixtures containing one 50–60 penetration asphalt and three different proportions of glassy and nonglassy particles. All six slags were brought to the following grading and 7.5 percent by weight of asphalt and 92.5 percent by weight of aggregate were used in all the mixtures.

Sie	e sizet										10	P_{ℓ}	l amount 188ing Dercent
	1/2-inel	1										_	100
	3/8-inch	1									 		92
	No. 4.												50
	No. 8.		 	-	-	 	 -	 	-				42

For all the mixtures, the material passing the No. 4 sieve and retained on the No. 8 sieve was obtained by crushing and sieving a part of the nonglassy material from the appropriate plant sample. In all cases, the fraction passing the No. 8 sieve consisted of a portion of slag sand, sample No. 7. As shown above, the sum of these two fractions, or the total amount passing the No. 4 sieve, comprised 50 percent of the aggregate in each test mixture.

Variations were made in the glassy-particle content of the 50 percent of the aggregate retained on the No. 4 sieve. In one set of six mixtures (one from each slag sample) no glassy particles were included in the fraction retained on the No. 4 sieve. In the next set, 15 percent of the material retained on the No. 4 sieve, or 7.5 percent of the total aggregate, consisted of glassy particles. In the third set, 30 percent of the coarse fraction or 15 percent of the total aggregate was glassy.

One 2½- by 4- by 8-inch specimen was prepared from each mixture and tested in the Public Roads roller stability machine.² Each specimen was compacted to develop the same aggregate density in the bituminous mixture as that obtained by vibrating the dry aggregate.³ The compacted unit weights of the mixtures in grams per cubic centimeter and the roller stability values obtained on them are given in table 3.

The roller stability test is a simulated small-scale traffic test in which a series of small steel rollers are passed over the specimen, which is immersed in water maintained at the test temperature of 140° F. The measure of stability is taken as the number of roller passages required to produce an elongation in the specimen of 0.3 inch.

After the specimens had been tested in the roller stability machine, they were broken up and a portion of each was molded into a cylindrical specimen 4 inches in diameter by 2½ inches high for the Stanton-Hveem stability test. These specimens were molded under direct compression of 3,000 pounds per square inch by the double-plunger method. They were tested at a temperature of 77° F. The results of the Stanton-Hyper stability tests are given in table 4 and are shown graphically in figure 1.

TABLE $3 - R$	esults of	roller	stability tes	ts on slag-a	usphaltic concrete
---------------	-----------	--------	---------------	--------------	--------------------

	Unit	weight specimen	of test	Roll	er stabili 140° F.	tyat
Slag No.	0 per- cent glassy	7.5 per- cent glassy	15 per- cent glassy	0 per- cent glassy	7.5 per- cent glassy	15 per- cent glassy
1	Gm. per C. C. 2.21 2.22 2.33 2.21 2.23 2.19 2.23	Gm. per C. C. 2.23 2.24 2.34 2.23 2.24 2.21 2.25	Gm. per C. C. 2.26 2.27 2.34 2.24 2.24 2.22 2.22	15 28 55 22 25 25 25 28	24 25 51 24 33 25 30	200 19 27 14 28 21 22

² Apparatusand method of test described by E. L. Tarwater in PUBLIC ROADS, September 1995, p. 134. ³ Apparatusand method of test described by J. T. Paulsand J. F. Goode in PUB-LIC ROADS, May 1939, p. 55.

FIGURE 1.—MAXIMUM, MINIMUM, AND AVERAGE STANTON-HVEEM STABILITY CURVES FOR THE 18 TEST MIXTURES OF TABLE 4.

This stability test is a direct compression test in which a measurement is made of the lateral pressure generated in a cylindrical test specimen by the axial load. High lateral pressure for a given load indicates relatively low stability while low lateral pressure for the same axial load indicates relatively high stability.

Neither the roller nor the Stanton-Hycem test results indicated that the stability of this group of mixtures

TABLE 4.— Results	of Stanton-Hveem	stability	tests or	ı slag-
	asphaltic concret	e		

	rticle t	ht of imen	H	orizont	al pres	sure, w	hen to	tal ver	tical lo	ad was	3
Slag No.	Glassy-pa conter	Unit weig test spec	0	1,000 pounds	3,000 pounds	5,000 pounds	7,000 pounds	9,000 pounds	11,000 pounds	13,000 pounds	15,000 pounds
1 2 3 4 5 6	Per- cent 0 0 0 0 0 0	Gm. per c. c. 2. 31 2. 32 2. 36 2. 26 2. 31 2. 26	Lb. per sq. in. 5 5 5 5 5 5 5 5 5	<i>Lb.</i> <i>per</i> <i>sq. in.</i> 6 6 7 6 6 6	Lb. per sq. in. 9 11 10 8 9	Lb. per sq. in. 11 11 16 14 11 12	Lb. per sq. in. 17 14 25 20 15 19	Lb. per sq. in. 31 22 47 38 30 34	<i>Lb.</i> <i>per</i> <i>sq. in.</i> 66 45 85 74 67 65	$\begin{array}{c} Lb.\\ per\\ sq.\ in.\\ 119\\ 92\\ 132\\ 122\\ 115\\ 109 \end{array}$	Lb. per sq. in. 175 145 185 174 169 159
Average			5	6	9	13	18	34	67	115	168
1 2 3 4 5 6	7.57.57.57.57.57.57.5	$\begin{array}{c} 2.\ 30\\ 2.\ 33\\ 2.\ 38\\ 2.\ 27\\ 2.\ 31\\ 2.\ 28 \end{array}$	555555	6 6 7 6 6 6	9 9 11 9 9 9	$ \begin{array}{r} 13 \\ 12 \\ 16 \\ 13 \\ 12 \\ 11 \\ 11 \end{array} $	$ \begin{array}{r} 21 \\ 17 \\ 27 \\ 20 \\ 19 \\ 17 \\ \end{array} $	38 30 51 41 35 34	$74 \\ 63 \\ 90 \\ 81 \\ 74 \\ 72$	$ \begin{array}{c c} 122\\ 112\\ 139\\ 129\\ 121\\ 122 \end{array} $	17€ 165 190 182 174 174
Average			5	6	9	13	20	38	76	124	177
1 2 3 4 5 6	15 15 15 15 15 15	2. 34 2. 34 2. 38 2. 28 2. 32 2. 29	5 5 5 5 5 5	7 6 7 6 6	$ \begin{array}{c} 10 \\ 9 \\ 12 \\ 10 \\ 9 \\ 9 \\ 9 \end{array} $	14 12 19 15 13 14	$ \begin{array}{c c} 22 \\ 18 \\ 33 \\ 25 \\ 20 \\ 21 \\ \end{array} $	$ \begin{array}{r} 41 \\ 34 \\ 61 \\ 51 \\ 38 \\ 40 \\ \end{array} $	81 73 102 91 76 77	$ \begin{array}{r} 130 \\ 122 \\ 148 \\ 139 \\ 124 \\ 123 \\ \end{array} $	185 175 2 197 190 174 174
Average.			5	6	10	15	23	44	83	131	183

¹ Most stable of the 18 mixtures. ² Least stable of the 18 mixtures.

was materially affected by the glassy-particle content of the slag aggregate. Considering individual slag samples, the roller stability test indicated that the mixtures containing 7.5 percent glassy particles might be slightly more stable than those containing 15 percent (see table 3). However, in two cases, the mixtures containing no glassy particles appeared to be slightly less stable than either of the mixtures containing glassy fractions and there were only two cases in which the nonglassy mixtures showed even slight superiority over both the corresponding glassy mixtures.

The Stanton-Hveem tests were quite consistent in showing a slight advantage for the all nonglassy mixtures over those containing 7.5 percent of glassy material and essentially the same advantage for the 7.5 percent mixtures over those containing 15 percent glassy material. These slight differences are not believed to be particularly significant since, without

(Continued from page 208)

random. Hence, a table of numbers from which randomly arrayed subsets may be drawn is designated "locally random".

The subject of local randomness cannot receive a full exposition here but some discussion of its fundamental importance in a set of random sampling numbers is believed to be desirable. The remarks of Kendall and Smith relative to tests for local randomness are worthy of quotation.

For practical purposes in deciding whether a given set is locally random, we have found that the following four tests are useful and searching. They are, however, not sufficient to establish the existence of local randomness, although they are necessary.

a. The first and most obvious test to be applied is that all the digits shall occur an approximately equal number of times. This test we call the frequency test;

b. Secondly, if the series is locally random, no digit shall tend to be followed by any other digit. If therefore we form a bivariate table showing the distribution of pairs of digits in the series, arranged in the rows according to the first digit, and in the columns according to the second digit, we should get frequencies which are approximately equal in all the cells. This test we refer to as the serial test;

refer to as the serial test; c. Thirdly, if the digits are arranged in blocks of, say, five, there will be certain expectation of the numbers in which the five digits are all the same, the numbers in which there are four of one kind, and so on. This test we refer to as the poker test, from an analogy with the card game;

d. Finally, there are certain expectations in regard to the gaps occurring between the same digits in the series. For instance, if we take one digit, say, zero, in about one-tenth of the cases the first zero will be followed immediately by a second zero, and there will be no gap. In about nine-hundredths of the cases there will be one digit between two zeros. In about eighty-one thousandths of the cases there will be a gap of two digits between successive zeros, and so on. This we call the gap test.

there will be no gap. In about nine-hundredths of the cases there will be one digit between two zeros. In about eighty-one thousandths of the cases there will be a gap of two digits between successive zeros, and so on. This we call the gap test. These four tests taken together are very powerful. It is comparatively easy to form series that evade the first three. For example, the recurring series, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, evades the frequency test, the series 1-2-3-4-, etc., evades the frequency test, and the serial test if the dashes are filled with random digits. We have, however, not succeeded in constructing a series which would certainly evade the gap test. Such a series would, it appears, have to have a very peculiar bias indeed, such as would hardly ever rise in practice.

The gap test may be extended. Not only will there be an expectation of the frequency of the gaps, but there will also be an expectation of the gaps between gaps of the same kind; these in turn will have expected gaps between them, and so on. There is thus an infinite sequence of the gap tests no one of which includes the others. All these tests are necessary for local randomness, though we have not established their sufficiency. It appears, therefore, that there is no finite set of tests of this

³ M. G. Kendall and B. Babington Smith, Journal of the Royal Statistical Society vol. 101, pp. 154, 155.

exception, the stability values for all 18 mixtures, whether obtained by the roller or Stanton-Hveem method, are well within the range considered necessary to assure satisfactory resistance to displacement under traffic.

CONCLUSIONS

1. The susceptibility to film stripping of the mixtures containing the six slags that were tested was not affected materially by variations in the content of glassy particles.

2. For bituminous mixtures containing 0, 15, and 30 percent of glassy particles in the fraction retained on the No. 4 sieve, the percentage of glassy material did not have a significant effect on stability.

3. The tests described furnish no indication that specification requirements placing drastic limitations on the glassy-particle content of slag aggregates for bituminous concrete are necessary.

character which is sufficient to demonstrate the local randomness of all finite sets of numbers.³

There remains to be mentioned the manner of using a set of random numbers in drawing a sample. If the topics just discussed are kept in mind, the use of a table of random numbers is extremely simple and straightforward. As already indicated, the first step is to number the members of the universe being sampled in any convenient order. Then, recalling that the digits of a proper set of random numbers are locally random, it is seen that all that is required is the choice of some pattern for selecting subsets of the proper number of digits each of which will constitute the sample to be drawn from the universe in question.

Naturally, to maintain theoretical validity the pattern chosen to select subsets should be followed consistently until a sufficient number of ordinals are obtained or until the possibilities of this pattern are exhausted. Most sets are arranged in columns of four or five digit numbers. Assuming the set being used to be that of Tippett which contains columns of four digit numbers, the selection of a 10 percent sample, for example, from a universe of 1,000 variates becomes a matter merely of selecting, starting at any point and not retracing, the first 100 numbers less than 1,000 which This will be taken as following an unbiased appear. method of selection. Any other method of putting digits together vertically or horizontally, forwards or backwards to make numbers of the desired size will be equally satisfactory, providing only that the pattern of selecting subsets once chosen is followed consistently.

HIGHWAY RESEARCH BOARD MEETS IN BALTIMORE DECEMBER 2-5, 1941

Changing a custom of twenty years' standing on account of the need for conserving Washington facilities for urgent defense needs, the Highway Research Board announces that its Twenty-fisrt Annual Meeting will be held at The Johns Hopkins University, Baltimore, Maryland, the first week of December 1941.

On Tuesday, December 2 several Departments of the Board will hold open meetings for the consideration of papers and reports.

Sessions of the Board for the discussion of topics relating to highway finance, economics, design, materials, construction, maintenance, traffic, and soils investigations will be held on Wednesday, Thursday, and Friday, December 3–5.

STATUS OF FEDERAL-AID HIGHWAY PROJECTS AS OF OCTOBER 31, 1941	IPEETED DURING CURRENT FISCAL YEAR UNDER CONSTRUCTION APPROVED FOR CONSTRUCTION BATANNEL OF	anted Federal Aid Miles Estimated Federal Aid Miles Latinated Federal Aid Miles Total Cost Federal Aid Miles Total Cost Federal Aid Miles Cost Proc.	37.37 \$ 1.261.780 92.5 \$ 6.038.031 \$ 2.996.115 193.3 \$ 1.880.004 \$ 93 ¹ ,850 49.2 \$ 897.957 31.10 333.026 33.1 1.226.780 67.8 558.314 \$ 775.078 286.701 37.8 00.355 1.226.756 67.8 67.8 558.314 \$ 775.078 286.701 37.8 395.467	80,409 2.659.950 88.0 5,149,495 2.808.374 61.1 3,496,621 1.722.093 61.4 1.725,978 51.555 1.160,808 122.3 2,150,528 1,247,015 150.6 1,898,858 1,072,095 56.1 1,113,203 11.773 341,250 7.2 1,839,858 1,272,095 56.1 1,113,203	14,010 104,617 4.9 811,153 399,662 21.2 268,040 114,020 8.4 979,278 72,915 386,458 52.4 1,537,92 794,925 30.5 1,892,110 922,333 16.1 2,236,146 25,531 1,062,765 62.1 6,566,643 3,293,572 273,6 3,919,851 1,959,926 164,5 4,549,951	11.55 339.942 72.8 1.168.465 720.532 63.7 6.04.926 373.507 20.4 942.750 25.11 1.356.50 71.3 8.138.397 11.3 8.138.375 1.399.392 1.355.3 1.255.412 7.310.226 20.93 13.55 1.367.3 1.557.412 7.317.926 5.311.0226 7.310.226	75,947 884,94 85.5 5,639,674 2,520,158 183,2 1,218,516 335,300 44.5 28,022 35,430 1,621,88 16,15 4,177,30 2,936,936 277.2 3,560,66 1,339,540 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280 2,936,917 70,280	30.645 400,301 22.3 2.353.120 1.006.642 39.7 2.568.556 1.299.036 56.3 3.053.749 30.657 356.578 32.02 1.833.442 977.831 22.3 270.470 3.64.973 364.973 31.005 356.578 32.9 1.574.678 1.574.678 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.64.487 3.3 3.64.487 3.3 3.05 3.9 3.9 3.64.487 3.3 3.9 3.9 3.9 3.9 3.64.487 3.3 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.64.473 3.9 <	53,449 1,129,370 17.3 2,316,149 1,139,333 14.9 1,175,721 584,274 8.4 2,553,405 302,470 2,916,78 11.7 4,330,570 2,166,115 74,55 2,045,500 19.5 771,564 302,470 2,916,175 74,55 74,55 2,045,500 19.5 777,564 302,460 2,914,1307 310,25 4,841,308 10,151,164,1844 677,780 780	22:950 1,400,620 160.1 5,549,952 2,710,986 308.9 659,300 377,900 32.5 661,219 23:038 1,936,666 14.1.6 10.294,546 4,699,107 190.1 3,462,480 777,629 44.5 5,045,965 02:041 1112;417 98:9 2,847,1172 1.617,893 16,650	56.048 373,489 109.9 7.319,146 3.694,555 647.0 710,611 355,366 38.5 2.176,030 74,181 1,543,338 92.2 1,036,310 899,711 34.3 458,057 397,569 9.4 97,664 72,338 1,036,310 899,711 34.3 453 12,23,633 9.4 97,669 9.4 97,664 32,328 1,044,253 5,3 1,223,631 555,839 14.3 18,224 7.32 770,981	H8.574 1.174.287 20.5 5.562.648 1.781.244 22.2 22.270 11.135 1.759.929 11.55 265.448 1.781.244 28.207 87.2 16.182 10.759.626 11.55 265.207 87.2 16.182 10.465 5.0 1.759.626 116.56 25.51.687 10.971.119 5.407.1119 2.466.2865 2.466.2865	22:010 1.120.290 105.9 4.067.552 2.036.635 157.0 577.927 285.555 26.2 1.736.439 96.922 1.509.463 236.4 2.008.110 1.557.464 235.4 2.056.670 1.046.0705 179.4 2.767.05 11.504 2.563.577 47.5 14.502 5.756.461 114 4.064.064 1.501 485 27.5 27.547.755	29,205 556,466 52.8 3,108,341 1,640,449 85.2 2,183,370 1,143,558 72.9 4,056,099 42,659 569 596 71.6 4,244,409 2,253,840 97.6 449,409 2,21,190 14.7 771,557 83,916 1,555,550 41.8 13,041,192 6,869,800 1121	33.402 266.095 5.5 1.280.255 538.753 9.0 28.060 14.030 .3 773.816 3.1.504 1.15.437 64.7 3.876.970 1.793.057 96.7 1.594.553 657.257 37.8 1.550.467 3.2.73 1.008.810 2.54.0 4.566.837 2.822.77 1.76.487	33,516 789,774 60.1 5,322,162 2,661.381 96.4 1,821,164 910,582 52.0 2,312,954 93,599 2,645,034 286.0 1,2971,713 6,382,824 495.8 5,444,880 2,244,670 182.1 2,776,213 486,455 4484,512 42,212 2,214,687 1,567,482 5,144,480 5,44 3,776,313	33,669 155,120 12.5 1.655,292 843,996 37.0 11.081 20,540 3 57.640 14,067 62,657 127,11,64 94.7 889,310 10.77 1.076,104 65,657 144,000 6.0 3.239,400 1.711,64 1.711,64 1.671,141 56.085 5.2 764,271 764,714 774,714 764,714 764,714 774,714 774,714 774,714 774,714 774,714 774,714 774,714 774,714 774,71	78,460 657,233 30.4 3,570,460 1,770,293 44.7 464,766 230,633 6.8 1,230,577 53,049 4046,770 46.8 6,339,497 2,988,288 194.3 1,999,120 731,599 62.8 2,393,402 11,46,770 146.3 7,311,11 174,713 1,399,120 734,159 62.8 239,345	55,514 231,540 2.5 732,536 343,000 1.0 1.0 642 70,300 .9 847,214 40,803 70,395 2.6 1.420,568 701,147 3.5 1.456 21,994,653 701,166 71,166 1.409,653 705,104 71,166	82,944 51,092,996 3,825.7 225,161,428 113,647,984 6,467.8 69,734,283 32,619,081 1,940.9 76,510,535
STATUS OF	COMPLETED DURING CURRENT FISCAL YEA	Estimated Total Cost Federal Aid Mi	\$ 2.537.337 \$ 1.261.780 9 \$ 531.710 \$ 1.251.026 3 \$ 710.335 1.258.909 1	4,980,409 2,639,950 8 2,051,555 1,160,808 12 711,753 347,250	214,010 104,617 772,915 386,458 2,125,531 1,062,765 6	1,361,855 8339,942 7 2,725,111 1,354,897 7 2,600,929 1,296,650 7	1,875,347 884,343 8 3,205,430 1,621,883 16 2,338,662 1,203,144 0	800,645 400,301 8 708,657 356,578 8 1,703,200 851,000 1	2,253,419 1,129,370 1 5,902,470 2,936,758 1 3,290,769 1,641,307 33	2,802,960 1,400,620 16 3,923,098 1,936,666 1 2,002,944 1,132,747 9	7756,648 3773,489 10 1,774,181 1,543,338 9 292,328 144,253 9	2.348.574 1.174.237 2 943.125 580.478 5 5.116.556 2.551.583	2, 392,919 1,180,290 10 2,696,932 1,509,463 2 5,211,504 2,593,677 1	1,329,205 650,460 6 1,142,629 689,896 3 3,082,916 1,535,850 1	533,402 266,095 891,504 415,437 (1,772,723 1,003,810 23	1,583,516 789,774 6 5,393,989 2,645,034 28 648,455 1484,518 1	333,669 165,120 1 1,243,087 623,172 3 362,625 194,000	1,278,460 637,233 7 908,049 446,770 1 1,414,675 903,980 14	463,514 231,540 140,808 70,395 176,100 87,085	98.382.944 51.092.996 3.88
		STATE	Alabarna Arizona Arkansas	Californiu Colorado Connecticut	Delaware Florida Georgia	Idaho Illinois Indiana	lowa Kansas Kentucky	Louisima Maine Maryland	Massachusetts Michigan Minnesota	Mississippi Missouri Montana	Nebraska Nevrada New Hampshire	New Jersey New Mexico New York	North Carolina North Dakota Ohio	Oklahomu Oregon Pennsylvania	Rhode Island South Carsenna South Dakota	Tennessee Texas Utah	Vermont Virgina Wushington	W est Virginia Wisconsin W yoming	District of Columbia Hawaii Puerto Rico	TOTALS

ST	'ATUS OF	FEDERA	dir-Aid AS 0	SECOND	ARY OR BER 31,	FEEDE 1941	R ROAD	PROJECT	S	
	COMPLETED DL	JRING CURRENT FISC	AL YEAR	UND	ER CONSTRUCTION		APPROVE	D FOR CONSTRUCTIO	Z	BALANCE OF FUNDS AVAIL-
STATE	Estimated Total Cost	Federal Aid	Miles	Estimated Total Cost	Federal Aid	Miles	Estimated Total Cost	Federal Aid	Miles	ABLE FOR PRO- GRAMMED PROJ- ECTS
Alahama Arizona Arkansas	\$ 832,405 67,371 330,055	\$ 414.568 48.972 164.276	35.8 4.5 27.4	\$ 991,152 194,180 235,449	\$ 506,990 143,267 117,623	51.9 17.4	\$ 165,900 68,387 331,004	\$ 77.280 47.600 165.436	14.0 14.0	\$ 294,164 307,364 68,426
California Colorado Connecticut	522,510 142,204 105,456	318,740 70,526 49,907	12.4 20.7 1.8	1,032,408 129,755 458,826	738,548 72,649 202,361	0.0 0.0 1.0	129.976 4.602	74.930 2.598	3.6	409,896 262,976 76,648
Delaware Florida Georgia	31.959 118.966 293.032	15,265 59,483 131,516	4.4 26.7	274.043 1.046.553 993.558	135,122 528,727 589,129	12.3 7.4 61.8	102,873 833,048	37.617 416.524	3.9 73.5	158,720 232,834 697,801
Idaho Illinois Indiana	163,914 680,650 90,900	97.878 337.4436 45.450	12.0 28.6 2.8	188,523 1,434,510 1,648,805	116,006 717,255 791,246	17.7 76.4 83.7	1 ¹¹¹ ,882 31,700	63,255 12,600	7.0 7.1	145,326 286,246 599,828
lowa Kansas Kentucky	508,912 348,387 413,140	240.491 176,679 97,595	124.3 54.6 15.0	363.952 1.944.652 1.377.687	153,398 974,493 355,843	71.6 132.3 82.0	245,880 443,636 786,685	115,426 221,159 199,174	43.0 33.6 32.4	252,470 668,146 110,785
Louisiana Maine Maryland	558,248 14,200 135,000	227.059 7.100 67.500	20.6 .8 8.1	6,460 251,758 585,000	3,230 125,879 292,325	11.7 13.7	289,362 63,650 82,000	138,761 26,114 41,000	21.5 2.2 .8	446,956 9,491 202,116
Massachusetts Michigan Minnesota	163,235 323,068 829,633	85,298 161,491 420,567	4.1 27.2 113.5	651.150 1.307.660 1.562.365	342.642 653.830 783.990	10.1 61.0 171.8	727.370 539.972	363,685 255,078	23.0 148.8	361.339 71.980 103.952
Mississippi Missouri Montana	477.700 285.184 311.504	238,850 142,198 176,926	20.6 36.0 50.7	1.012.161 747.240 241.662	191.346 359.779 137.374	49.7 78.7 26.7	1,008,600 420,266 65,917	367.376 168.538 37.4480	45.2 54.2 4.8	112,643 583,029 577,423
Nebraska Nevada New Hampshire	102,684 118,591	50.743 103.169	13.5 12.8	681.717 129.863 338.140	348.749 93.360 167.149	68.5 9.7 8.2	83,106 159,363 52,105	41.553 138.486 3.572	41.1 10.8 1.	338,426 2,981 89,289
New Jersey New Mexico New York	246,870 413,533 751,962	123,355 259,915 378,224	1,2.1 1,2.6 20.8	624.812 189.504 1.053.146	329.865 122.533 534.664	16.5 15.1 21.3	82.910 167.514 75.000	41.455 101.129 37.500	1.8 5.1 1.0	353.335 6.907 502.500
North Carolina North Dakota Ohio	129,990 149,569 845,072	64,995 26,558 422,280	11.1 2.4 30.2	742.847 3.434 1.709.240	401,478 3,434 901,810	60.1 37.1	69,820 808,050 115,000	20,000 793,860 57,500	42.7 42.7	254.103 485,901 795,592
Oklahoma Oregon Pennsylvania	246,780 324,677 620,078	130,349 162,124 310,039	9.7 26.6	127,338 487,315 1,887,581	67.173 260.529 932.724	11.9 30.8 33.9	884,486 134,541 72,000	467,008 51,670 36,000	68.3 14.1 1.8	723.546 120.289 43.101
Rhode Island South Carolina South Dakota	88,194 310,932 32,130	144,040 100,066 18,006	33.9 33.9 15.2	139.310 690.000 3.622	73,157 284,224 3,622	21.2	3,610	1,805	114.5	56.220 165.627 190.587
Tennessee Texas Utah	230,843 561,809 186,949	114,430 272,011 123,241	8.1 59.3 17.0	1.479.414 1.047.627 62.245	739.707 504.517 32.943	47.9 95.1	234.030 429.420 79.538	117,015 201,550 36,884	1.0 1.0	1,168,978 1,168,978
Vermont Virginia Washington	36.231 339.398 151.705	18,109 155,485 92,113	11.1	2.558 374.996 565.560	1,279 171,246 265,814	9°1 15°1	168.097 59.050	75.058 29.525	7.8	9.258 351.901 149.770
West Virginia Wisconsia Wyoming	86,300 698,433 364,162	43,150 350,225 157,111	2°4 34.5 18.8	623.774 1.815.193 464.237	311.274 809.663 204.529	23.8 56.2 31.7	15,700 76,393 413,601	7.850 36.920 16.400	2.6	313,609 124,441 721
District of Columbia Hawaii Puerto Rico	80 . 772 45 . 960	39 •924 22 • 305	-9 -52	2.558 2.375 185.404	1.279 2.375 90.550	8				76.120 249.562 134.883
TOTALS	14,811,257	7.377.738	1,063.5	34.113.319	16,992,699	1.694.3	11,442,474	6,191,971	807.9	14.630.299

U. S. GOVERNMENT PRINTING OFFICE: 1941

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Agency and as the Agency does not sell publications, please send no remittance to the Federal Works Agency.

ANNUAL REPORTS

- Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
- Report of the Chief of the Bureau of Public Roads, 1932. 5 cents.
- Report of the Chief of the Bureau of Public Roads, 1933. 5 cents.
- Report of the Chief of the Bureau of Public Roads, 1934. 10 cents.
- Report of the Chief of the Bureau of Public Roads, 1935. 5 cents.
- Report of the Chief of the Bureau of Public Roads, 1936. 10 cents.
- Report of the Chief of the Bureau of Public Roads, 1937. 10 cents.
- Report of the Chief of the Bureau of Public Roads, 1938. 10 cents.
- Report of the Chief of the Bureau of Public Roads, 1939. 10 cents.

Work of the Public Roads Administration, 1940.

HOUSE DOCUMENT NO. 462

- Part 1 . . . Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
- Part 2 . . . Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
- Part 3 . . . Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
- Part 4 . . . Official Inspection of Vehicles. 10 cents.
- Part 5 . . . Case Histories of Fatal Highway Accidents. 10 cents.

Part 6 . . . The Accident-Prone Driver. 10 cents.

MISCELLANEOUS PUBLICATIONS

- No. 76MP . . The Results of Physical Tests of Road-Building Rock. 25 cents.
- No. 191MP. . Roadside Improvement. 10 cents.
- No. 272MP. . Construction of Private Driveways. 10 cents.
- No. 279MP. Bibliography on Highway Lighting. 5 cents.
- Highway Accidents. 10 cents.
- The Taxation of Motor Vehicles in 1932. 35 cents.
- Guides to Traffic Safety. 10 cents.
- An Economic and Statistical Analysis of Highway-Construction Expenditures. 15 cents.

Highway Bond Calculations. 10 cents.

Transition Curves for Highways. 60 cents.

Highways of History. 25 cents.

Specifications for Construction of Roads and Bridges in National Forests and National Parks. 1 dollar.

DEPARTMENT BULLETINS

- No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.
- No. 1486D . . Highway Bridge Location. 15 cents.

TECHNICAL BULLETINS

No. 55T . . . Highway Bridge Surveys. 20 cents. No. 265T . . . Electrical Equipment on Movable Bridges. 35 cents.

Single copies of the following publications may be obtained from the Public Roads Administration upon request. They cannot be purchased from the Superintendent of Documents.

MISCELLANEOUS PUBLICATIONS

No. 296MP. Bibliography on Highway Safety. House Document No. 272 . . . Toll Roads and Free Roads. Indexes to PUBLIC ROADS, volumes 6–8 and 10–21, inclusive.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

- Report of a Survey of Transportation on the State Highway System of Ohio (1927).
- Report of a Survey of Transportation on the State Highways of Vermont (1927).
- Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
- Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
- Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
- Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

UNIFORM VEHICLE CODE

- Act I.—Uniform Motor Vehicle Administration, Registration, Certificate of Title, and Antitheft Act.
- Act II.—Uniform Motor Vehicle Operators' and Chauffeurs' License Act.
- Act III.-Uniform Motor Vehicle Civil Liability Act.
- Act IV .- Uniform Motor Vehicle Safety Responsibility Act.

Act V.-Uniform Act Regulating Traffic on Highways.

Model Traffic Ordinances.

A complete list of the publications of the Public Roads Administration, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to Public Roads Administration, Willard Bldg., Washington, D. C.

STATUS OF FEDERAL-AID GRADE CROSSING PROJECTS AS OF OCTOBER 31, 1941		BALANCE OF FUNDS AVAIL- ABLE FOR PROJECTS PROJECTS	\$ 729.700 92.976 313.381	1.501.452 547.822 352.566	73.707 610.361	262, 324 1.531, 566 644, 902	120.383 874.766	610,118 109,934	878.999	327,264	116,137	554.080 338.650 2.420.776	782.113 336.428	1,123,686 391,816 1,330,260	176.421 691.260 577.780	845,415 1.371,886 226.082	4.381 568.313 453.333	510.406 1.159.125 286.556	5,851 180,308 188,708	29.952.314
		Grade Grossings Protect- ed by Signals or Other- wise	6 21	10	19	E3 1	140	OW	51	11 0			24	18	16	~ 500	t: M	nmo		462
		UMBER Grade Grade Crossing Struc- tures Re- construct- ed	-	-		1			1 1			cu m		-	N	1			-1	54
	CTION	Grade Grade Crossings Eliminated by Separa- tion or Relocation	м		mc		1101	0 t	100.00-			чм	maa	m u		m	N		0	63
	ROVED FOR CONSTRU	Fed. Aid	\$ 154.235 13.255 33.786	20.630 21.042 222.740	504, 341 203, 021	34,621 1401,664	304.969	472.152 8.680 htthe one	763, 830 197, 793	98,708 223,526	26.502	295 560 252 068 613 285	251,793 223,120 282,350	354.274 4.733 1.142.789	166.574	102,106 148,350 69,025	87.435 12.151	93,190 61,692 8,199	273.744 149.890	11.361.758
	IddV	Estimated Total Cost	\$ 154.235 13.255 33.786	20.630 21.042 231.374	692.694 203.082	34,621 420,414 420,414	195,404 348,854	473, 319 8,680 500, 703	763,830 527,954	98.708 330.551	26,502 21,703	354 985 259 103 750 945	251.793 223.120 541.407	412,316 4,733 1,147,255	300, 248 41, 200	102,106 156,650 69,025	106.935	93.190 61.692 8.199	298,213	12.631.962
		Grade Crossings Protect- Protect- ed by Signals im Other- wice	I		14	80	10	-	5		9	1	+ +	ñ	50	12	~	21		115
		UMBER Grade Crossing Struc- tures Re- construct- ed	50	1 1	· · · ·		~~~~		CU MM	n m	c	° 1	5		m		ma	5 5		61
	NO	Crade Crossings Eliminated by Separa- tion or Relocation	010	0.0	1 80 4	mgy	10 8 8	00000	10 mr	000	537	5045	15 8	10 01	122	17 8	050	0. 1	NO	298
	UNDER CONSTRUCT	Federal Aid	\$ 419,800 300,944 509,130	1, 309, 365 590, 186 60, 676	94.135 762.376 078.527	293.553 1.978.650 763.026	1,019,232 569,456 1,069,248	588,415 390,447 330,159	1,109,293 972,739	811,084 1,524,262	1.187.289 56.484	1,129,314 68,342 2,763,787	254.028 684.293 3.376.850	846,212 84,757 3,203,414	330.278 550.278 661.192	1,176,346 1,708,791 77,264	302.051 717.553 333.418	801.522 838.394 4.929	1,462 213,655 632,516	201,601,65
		Estimated Total Cost	\$ 421.822 309.635 511.114	1.315.838 590.186 61.712	94.135 767.560 978.537	302,225 2,161,884 775,513	1.267.169 569.456 1.075.361	588,415 390,447 330,159	1,120,671 972,739 1,026,671	811.084 1.979.682	1,187,289 56,484 306,045	1. 254 865 68 342 2 812 436	256,906 697,230 3,457,893	849.622 125.127 3.243.392	3,655 342,673 677,142	1.176.346 1.716.525 77,264	331.830 718.013 333.418	807,142 840,100 4,329	1,462 214,170 639,340	140.795.640
		Grade Crossings Protect. Protect. Signals or Other-	N 19	ч	10-	73	500-	60	5		12		17	17 2	10	13	- 5	추권		211
	YEAR	UMBER Grade Crossing Struc- tares Re- construct- ed			-		4	~	H K	-	1	60	n t	-	1	ξ	~ 7			31
	FISCAL	Grade Grade Crossings Eliminated by Separa- tion or Relocation		- 0	9	1	2 2 2	0	0	~ ~	000	∾	2004	AWF	10 10	-1 20 CU		15	201	76
	DURING CURRENT	Federal Aid	\$ 5.739 107.256	190.789 5.646 165.415	14, 380 33, 1417 1403, 084	11, 301 148, 267 173, 001	203,589 34,229 161,519	lthq.757	394.700 338.635	202, 300 55, 240	142.714 119.580	214.360 1.318.867	412.365 79.789 323.904	124.660 278.255 873.355	205, 241 166, 310 348, 243	216,452 708,673 41,272	92,292 55,4443	10,640 128,261 477,150	2.193 192.566 102.980	9.853.158
	COMPLETEI	Estimated Total Cost	\$ 5.739 107.311	376.504 5.685 166.222	4,380 33,447 1403,084	11,301 187,801 173,001	213.010 34.334 163.064	481.550	394.700 338.950	202 300 55 240 56 726	142.718 119.580 61.682	214.360 1.345.993	412,365 80,242 324,301	128.076 302.166 873.683	205, 241 169, 540 348, 243	225,916 717,706 42,014	92,292 92,292 55,4443	10.640 156.539 477.151	2,193 192,574 103,629	10.230.359
		STATE	Alabama Arizona Arkansas	California Colorado Connecticut	Delaware Florida Georgia	Idaho Illinois Indiana	lowa Kansas Kentucky	Louisiana Maine Maryland	Massachusetts Michigan Minnesota	Mississippi Missouri Montana	Nebraska Nevada New Hampshire	New Jersey New Mexico New York	North Carolina North Dakota Ohio	Oklahoma Oregon Pennsylvania	Rhode Island South Carolina South Dakota	Tennessee Texas Utah	Vermont Virginia Washington	West Virginia Wisconsin Wyoming	District of Columbia Hawaii Puerto Rico	TOTALS

